模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (6): 497-506    DOI: 10.16451/j.cnki.issn1003-6059.202206002
“基于深度学习的目标检测与识别”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于残差注意力机制和金字塔卷积的表情识别
包志龙1, 陈华辉1
1.宁波大学 信息科学与工程学院 宁波 315021
Expression Recognition Based on Residual Attention Mechanism and Pyramid Convolution
BAO Zhilong1, CHEN Huahui2
1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315021

全文: PDF (892 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 随着深度学习的应用,表情识别技术得到快速发展,但如何提取多尺度特征及高效利用关键特征仍是表情识别网络面临的挑战.针对上述问题,文中使用金字塔卷积有效提取多尺度特征,使用空间通道注意力机制加强关键特征的表达,构建基于残差注意力机制和金字塔卷积的表情识别网络,提高识别的准确率.网络使用MTCNN(Multi-task Convolutional Neural Network)进行人脸检测、人脸裁剪及人脸对齐,再将预处理后的图像送入特征提取网络.同时,为了缩小同类表情的差异,扩大不同类表情的距离,结合Softmax Loss和Center Loss,进行网络训练.实验表明,文中网络在Fer2013、CK+数据集上的准确率较高,网络参数量较小,适合表情识别在现实场景中的应用.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
包志龙
陈华辉
关键词 表情识别金字塔卷积残差注意力机制多尺度特征    
Abstract:With the widespread application of deep learning, facial expression recognition technology develops rapidly. However, how to extract multi-scale features and utilize key features efficiently is still a challenge for facial expression recognition network. To solve these problems, pyramid convolution is employed to extract multi-scale features effectively, and spatial channel attention mechanism is introduced to enhance the expression of key features. An expression recognition network based on residual attention mechanism and pyramidal convolution is constructed to improve the recognition accuracy. Multi-task convolutional neural network is utilized for face detection, face clipping and face alignment, and then the preprocessed images are sent to the feature extraction network. Meanwhile, the network is trained by combining Softmax Loss and the Center Loss to narrow the difference between the same expressions and enlarge the distance between different expressions. Experiments show that the accuracy of the proposed network on Fer2013 dataset and CK+ dataset is high, the number of network parameters is small and the proposed method is more suitable for the application of realistic scenarios of expression recognition.
Key wordsExpression Recognition    Pyramid Convolution    Residual Attention Mechanism    Multi-scale Feature   
收稿日期: 2021-12-15     
ZTFLH: TP 391  
基金资助:国家自然科学基金项目(No.61572266)资助
通讯作者: 陈华辉,博士,教授,主要研究方向为数据流处理、大数据处理、数据挖掘等.E-mail:chenhuahui@nbu.edu.cn.   
作者简介: 包志龙,硕士研究生,主要研究方向为表情识别、神经网络轻量化等.E-mail:13821003591@163.com.
引用本文:   
包志龙, 陈华辉. 基于残差注意力机制和金字塔卷积的表情识别[J]. 模式识别与人工智能, 2022, 35(6): 497-506. BAO Zhilong, CHEN Huahui. Expression Recognition Based on Residual Attention Mechanism and Pyramid Convolution. Pattern Recognition and Artificial Intelligence, 2022, 35(6): 497-506.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202206002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I6/497
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn