模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (6): 507-515    DOI: 10.16451/j.cnki.issn1003-6059.202206003
“基于深度学习的目标检测与识别”专题 最新目录| 下期目录| 过刊浏览| 高级检索 |
融合多尺度特征的轻量级人脸检测算法
王建1, 宋晓宁1
1.江南大学 人工智能与计算机学院 江苏省模式识别与计算智能工程实验室 无锡 214122
Lightweight Face Detection Algorithm with Multi-scale Feature Fusion
WANG Jian1, SONG Xiaoning1
1. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122

全文: PDF (1626 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 受到移动设备计算能力和存储资源受限的局限,设计高效、高精度的人脸检测器是一个开放性的挑战.因此,文中提出融合多尺度特征的轻量级人脸检测算法(Lightweight Face Detection Algorithm with Multi-scale Feature Fusion, LFDMF),摒弃被视为人脸检测核心组件的多级检测结构.首先,利用现有的轻量级主干特征提取网络编码输入图像.然后,利用提出的颈部网络扩张特征图感受野,并将含有不同感受野的多尺度信息融至单级特征图中.最后,利用提出的多任务敏感检测头对该单级特征图进行人脸分类、回归和关键点检测.相比分而治之的人脸检测器,LFDMF精度更高、计算量更少.LFDMF按模型计算量高低可构建3个不同大小的网络,大模型LFDMF-L在Wider Face数据集上性能较优,中等模型LFDMF-M和小模型LFDMF-S以极低的模型参数量和计算量实现可观性能.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王建
宋晓宁
关键词 人脸检测多尺度特征单级特征图多任务敏感检测头    
Abstract:Due to the limitations in computing capacity and storage resources of mobile devices, it is still an open challenge to design an efficient and high-precision face detector. In this paper, a lightweight face detection algorithm with multi-scale feature fusion(LFDMF) is proposed. The multi-level detection structure, regarded as the core component of face detection, is removed. Firstly, the existing lightweight backbone feature extraction network is introduced to encode the input image. Then, the proposed neck network is utilized to expand the receptive field of the feature map, and the multi-scale information with different receptive fields is fused into the one-level feature map. Finally, the proposed multi-task sensitive detector head is employed to perform face classification, regression and key point detection for the one-level feature map. Compared with the face detectors with RetinaFace and DSFD, LFDMF achieves higher accuracy and less computation burden. LFDMF builds three networks of different sizes. The large model, LFDMF-L, is built to achieve the most advanced performance on the Wider Face dataset, while the medium model, LFDMF-M, and the small model, LFDMF-S, achieve impressive performance with a small number of model parameters and less computation.
Key wordsFace Detection    Multi-scale Feature    One-Level Feature Map    Multi-task Sensitive Detector Head   
收稿日期: 2022-03-14     
ZTFLH: TP 391.4  
基金资助:国家自然科学基金项目(No.61876072)资助
通讯作者: 宋晓宁,博士,教授,主要研究方向为模式识别、计算机视觉、生物信息学、机器学习.E-mail:x.song@jiangnan.edu.cn.   
作者简介: 王 建,硕士研究生,主要研究方向为计算机视觉、目标检测.E-mail:6201924155@stu.jiangnan.edu.cn.
引用本文:   
王建, 宋晓宁. 融合多尺度特征的轻量级人脸检测算法[J]. 模式识别与人工智能, 2022, 35(6): 507-515. WANG Jian, SONG Xiaoning. Lightweight Face Detection Algorithm with Multi-scale Feature Fusion. Pattern Recognition and Artificial Intelligence, 2022, 35(6): 507-515.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202206003      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I6/507
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn