模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (10): 928-938    DOI: 10.16451/j.cnki.issn1003-6059.202210006
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于伪孪生网络双层优化的对比学习
陈庆宇1,2,3, 季繁繁2,3, 袁晓彤2,3,4
1.南京信息工程大学 自动化学院 南京 210044;
2.南京信息工程大学 数字取证教育部工程研究中心 南京 210044;
3.南京信息工程大学 江苏省大数据分析技术重点实验室 南京 210044;
4.南京信息工程大学 计算机学院 南京 210044
Contrastive Learning Based on Bilevel Optimization of Pseudo Siamese Networks
CHEN Qingyu1,2,3, JI Fanfan2,3, YUAN Xiaotong2,3,4
1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044;
2. Engineering Research Center of Digital Forensics Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044;
3. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044;
4. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044

全文: PDF (2041 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 目前,基于伪孪生网络的对比学习算法使用各种组件以获得最优学生网络,但忽略教师网络在下游任务中的表现,因此,文中提出基于伪孪生网络双层优化的对比学习,促进学生网络和教师网络相互学习,获得最优教师网络.双层优化策略包括基于近邻优化的学生网络优化策略和基于随机梯度下降的教师网络优化策略.基于近邻优化的学生网络优化策略让教师网络成为约束项,帮助学生网络更好地向教师网络学习.基于随机梯度下降的教师网络优化策略求解近似教师网络,梯度更新教师网络.在5个数据集上的实验表明,文中算法取得较高的k-NN(k=1)分类精度和线性分类精度,特别在批次大小较小时,优势较大.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈庆宇
季繁繁
袁晓彤
关键词 对比学习双层优化学生网络近邻优化教师网络随机梯度下降    
Abstract:At present, various designs are applied in contrastive learning algorithms based on pseudo siamese networks to acquire the best student network. However, the performance of teacher network in downstream tasks is ignored. Therefore, an algorithm of contrastive learning based on bilevel optimization of pseudo siamese networks(CLBO)is proposed to acquire the best teacher network by promoting the learning between student and teacher networks. The bilevel optimization strategy includes student network optimization strategy based on nearest neighbor optimization and teacher network optimization strategy based on stochastic gradient descent. The teacher network is regarded as a constraint term through the student network optimization strategy based on nearest neighbor optimization to help the student network learn better from the teacher network. The parameters are calculated by the teacher network optimization strategy based on stochastic gradient descent to update the teacher network. Experiments on 5 datasets show that CLBO performs better than other algorithms in k-NN classification and linear classification tasks. Especially, the advantages of CLBO is obvious when the batch size is smaller.
Key wordsContrastive Learning    Bilevel Optimization    Student Network    Nearest Neighbor Optimization    Teacher Network    Stochastic Gradient Descent   
收稿日期: 2022-04-29     
ZTFLH: TP 391  
基金资助:科技创新2030-“新一代人工智能”重大项目(No.2018AAA0100400)、国家自然科学基金项目(No.U21B2049,61876090,61936005)资助
通讯作者: 袁晓彤,博士,教授,主要研究方向为机器学习、图像处理、AI+气象等.E-mail:xtyuan1980@gmail.com.   
作者简介: 陈庆宇,硕士研究生,主要研究方向为自监督学习.E-mail:qychen1996@gmail.com. 季繁繁,博士研究生,主要研究方向为深度学习.E-mail:nuistji@gmail.com.
引用本文:   
陈庆宇, 季繁繁, 袁晓彤. 基于伪孪生网络双层优化的对比学习[J]. 模式识别与人工智能, 2022, 35(10): 928-938. CHEN Qingyu, JI Fanfan, YUAN Xiaotong. Contrastive Learning Based on Bilevel Optimization of Pseudo Siamese Networks. Pattern Recognition and Artificial Intelligence, 2022, 35(10): 928-938.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202210006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I10/928
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn