模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (11): 977-988    DOI: 10.16451/j.cnki.issn1003-6059.202211003
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
网络决策形式背景下基于因果力的邻域推荐算法
范敏1,2, 郭瑞欣1,2, 李金海1,2
1.昆明理工大学 数据科学研究中心 昆明 650500;
2.昆明理工大学 理学院 昆明 650500
Neighborhood Recommendation Algorithm Based on Causality Force under Network Formal Decision Context
FAN Min1,2, GUO Ruixin1,2, LI Jinhai1,2
1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500;
2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500

全文: PDF (721 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 网络数据下的概念认知与知识发现是网络数据分析领域的热门研究方向,已应用于推荐系统领域,但是如何构建合理的弱概念集以提高邻域推荐效果仍是一个难题.为了解决该问题,文中提出变精度弱概念集,诱导出包含较多信息量的邻域,在此基础上提出基于因果力的邻域推荐算法.首先,定义相似性网络聚合中心度,确定专家节点,得到变精度弱概念集,进行邻域划分.然后,在每个邻域中利用变精度共有算子得到对象的条件属性弱概念和对象的决策属性弱概念,通过因果力代换原理和相关推论给出邻域推荐算法.在MovieLens、Filmtrust数据集上的对比实验表明,文中算法在精确度、召回率、F1值和运行时间上均有明显提升.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
范敏
郭瑞欣
李金海
关键词 形式概念分析网络决策形式背景因果力变精度算子推荐算法    
Abstract:Concept cognition and knowledge discovery under network data are hot research directions in the field of network data analysis, and they are applied in the field of recommendation system. However, how to construct a reasonable set of weaken-concepts to improve the effectiveness of neighborhood recommendation is still a difficult problem. To solve this problem, a set of variable precision weaken-concepts is proposed to induce neighborhoods with more information, and then a neighborhood recommendation algorithm is developed based on causality force. Firstly, the aggregation centrality degree of similarity network is defined to determine expert nodes, and a set of variable precision weaken-concepts is obtained to divide neighborhoods. Secondly, the variable precision common operators are employed in each neighborhood to obtain the weaken-concepts of conditional attributes and decision attributes of objects. Finally, a neighborhood recommendation algorithm is given based on the principle of causality force and related properties. Experimental results on MovieLens and Filmtrust datasets show that the accuracy, recall, F1 and running time of the proposed algorithm are greatly improved.
Key wordsFormal Concept Analysis    Network Formal Decision Context    Causality Force    Variable Precision Operator    Recommendation Algorithm   
收稿日期: 2022-10-18     
ZTFLH: TP 18  
基金资助:国家自然科学基金项目(No.11971211,12171388)资助
通讯作者: 李金海,博士,教授,主要研究方向为认知计算、粒计算、大数据分析、概念格、粗糙集.E-mail: jhlixjtu@163.com.   
作者简介: 范 敏,博士,副教授,主要研究方向为数据挖掘、粗糙集、粒计算、社会网络分析.E-mail:fmkmust@163.com.郭瑞欣,硕士研究生, 主要研究方向为数据挖掘、社会网络分析.E-mail:1905248675@qq.com.
引用本文:   
范敏, 郭瑞欣, 李金海. 网络决策形式背景下基于因果力的邻域推荐算法[J]. 模式识别与人工智能, 2022, 35(11): 977-988. FAN Min, GUO Ruixin, LI Jinhai. Neighborhood Recommendation Algorithm Based on Causality Force under Network Formal Decision Context. Pattern Recognition and Artificial Intelligence, 2022, 35(11): 977-988.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202211003      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I11/977
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn