模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2022, Vol. 35 Issue (11): 965-976    DOI: 10.16451/j.cnki.issn1003-6059.202211002
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
流形正则引导的自适应加权多视角子空间聚类
林燕铭1, 陈晓云1
1.福州大学 数学与统计学院 福州 350108
Adaptive Weighted Multi-view Subspace Clustering Guided by Manifold Regularization
LIN Yanming1, CHEN Xiaoyun1
1. School of Mathematics and Statistics, Fuzhou University, Fu-zhou 350108

全文: PDF (2103 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 现有多视角子空间聚类方法大多学习多视角数据的一致共享信息,并将每个视角的贡献视为同等重要以集成多个视角的差异信息.然而此思想忽略不同视角间可能存在的噪声或冗余,导致最终聚类性能不佳.为此,文中提出流形正则引导的自适应加权多视角子空间聚类算法.算法采用核范数学习每个视角的一致性全局低秩表示信息并利用组效应刻画不同视角的差异信息.根据流形正则的思想,自适应学习每个视角的权重,自动为每个视角的差异信息分配贡献度.再根据自适应权重集成差异信息并融合一致信息,获得最终的共识表示.最后利用该共识表示实现聚类.在6个公开数据集上的实验表明文中算法能有效提升多视角聚类性能.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
林燕铭
陈晓云
关键词 多视角聚类子空间聚类自适应加权流形正则    
Abstract:In most of the existing multi-view subspace clustering methods, the consistent shared information of the multi-view data is learned, and the contribution of each view is regarded as equally important to integrate the difference information of multiple views. However, possible noise or redundancy between different views is ignored due to the idea of treating each view as equally important, resulting in poor final clustering performance. Therefore, an algorithm of adaptive weighted multi-view subspace clustering guided by manifold regularization(MR-AWMSC) is proposed in this paper. The consistent global low-rank representation information for each view is learned by nuclear norm, and difference information from different views is described by group effect. According to the concept of manifold regularization, the weight of each view is adaptively learned, and the contribution degree to the difference information of each view is automatically assigned. The difference information is integrated by the adaptive weight and the consistent information is fused to obtain the final consensus representation. The consensus representation is constructed for clustering multi-view data. Experimental results on six public datasets demonstrate that MR-AWMSC effectively improves the multi-view clustering performance.
Key wordsKey Words Multi-view Clustering    Subspace Clustering    Adaptive Weight    Manifold Regularization   
收稿日期: 2022-05-16     
ZTFLH: TP 391  
基金资助:国家自然科学基金项目( No.11571074)、福建省自然科学基金项目(No.2022J01102)资助
通讯作者: 陈晓云,博士,教授,主要研究方向为机器学习、数据挖掘、模式识别.E-mail:c_xiaoyun@fzu.edu.cn.   
作者简介: 林燕铭,硕士研究生,主要研究方向为机器学习、模式识别.E-mail:1101818978@qq.com.
引用本文:   
林燕铭, 陈晓云. 流形正则引导的自适应加权多视角子空间聚类[J]. 模式识别与人工智能, 2022, 35(11): 965-976. LIN Yanming, CHEN Xiaoyun. Adaptive Weighted Multi-view Subspace Clustering Guided by Manifold Regularization. Pattern Recognition and Artificial Intelligence, 2022, 35(11): 965-976.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202211002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2022/V35/I11/965
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn