Abstract:To solve the problem of multi-view clustering, a latent low-rank sparse multi-view subspace clustering(LLSMSC) algorithm is proposed. A latent space shared by all views is constructed to explore the complementary information of multi-view data. The global and local structure of multi-view data can be captured to attain promising clustering results by imposing low-rank constraint and sparse constraint on the implicit latent subspace representation simultaneously. An algorithm based on augmented Lagrangian multiplier with alternating direction minimization strategy is employed to solve the optimization problem. Experiments on six benchmark datasets verify the effectiveness and superiority of LLSMSC.
[1] AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. ACM SIGMOD Record, 1998, 27(2): 94-105. [2] YANG A Y, WRIGHT J, MA Y, et al. Unsupervised Segmentation of Natural Images via Lossy Data Compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225. [3] 李 涛,王卫卫,翟 栋,等.图像分割的加权稀疏子空间聚类方法.系统工程与电子技术, 2014, 36(3): 580-585. (LI T, WANG W W, ZHAI D, et al. Weighted-Sparse Subspace Clustering Method for Image Segmentation. Systems Engineering and Electronics, 2014, 36(3): 580-585.) [4] LU L, VIDAL R. Combined Central and Subspace Clustering on Computer Vision Applications // Proc of the 23rd International Conference on Machine Learning. New York, USA: ACM, 2006: 593-600. [5] VIDAL R. Subspace Clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68. [6] VIDAL R, MA Y, SASTRY S S, Generalized Principal Component Analysis(GPCA). Berlin, Germany: Springer, 2016. [7] AGARWAL P K, MUSTAFA N H. k-means Projective Clustering // Proc of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. New York, USA: ACM, 2004: 155-165. [8] YANG A Y, RAO S R, MA Y. Robust Statistical Estimation and Segmentation of Multiple Subspaces // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2006. DOI: 10.1109/CVPRW.2006.178. [9] ELHAMIFAR E, VIDAL R. Sparse Subspace Clustering: Algorithm, Theory, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. [10] LIU G C, LIN Z C, YU Y. Robust Subspace Segmentation by Low-Rank Representation // Proc of the 27th International Conference on Machine Learning. Madison, USA: Omnipress, 2010: 663-670. [11] VON LUXBURG U.A Tutorial on Spectral Clustering. Statistics and Computing, 2007, 17(4): 395-416. [12] 王卫卫,李小平,冯象初,等.稀疏子空间聚类综述.自动化学报, 2015, 41(8): 1373-1384. (WANG W W, LI X P, FENG X C, et al. A Survey on Sparse Subspace Clustering. Acta Automatica Sinica, 2015, 41(8): 1373-1384.) [13] HAN H, LIN Z C, FENG J J, et al. Smooth Representation Clustering // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 3834-3841. [14] LIU G C, LIN Z C, YAN S C, et al. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. [15] XU C, TAO D C, XU C. A Survey on Multi-view Learning[C/OL]. [2019-11-16]. http://export.arxiv.org/pdf/1304.5634. [16] CHAO G Q, SUN S L, BI J B. A Survey on Multi-view Clustering[C/OL]. [2019-11-16]. https://128.84.21.199/pdf/1712.06246.pdf. [17] KUMAR A, RAI P, DAUME H. Co-regularized Multi-view Spectral Clustering // SHAWE-TAYLOR J, ZEMEL R S, BARTLETT P L, et al., eds. Advances in Neural Information Processing Systems 24. Cambridge, USA: The MIT Press, 2011: 1413-1421. [18] XIA R K, PAN Y, DU L, et al. Robust Multi-view Spectral Clustering via Low-Rank and Sparse Decomposition // Proc of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 2149-2155. [19] ZHOU D Y, BURGES C J C. Spectral Clustering and Transductive Learning with Multiple Views // Proc of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007: 1159-1166. [20] ZHANG C Q, FU H Z, LIU S, et al. Low-Rank Tensor Constrained Multiview Subspace Clustering // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1582-1590. [21] ZHANG C Q, HU Q H, FU H Z, et al. Latent Multi-view Subspace Clustering // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 4333-4341. [22] TANG C, ZHU X Z, LIU X W, et al. Learning a Joint Affinity Graph for Multiview Subspace Clustering. IEEE Transactions on Multimedia, 2019, 21(7): 1724-1736. [23] LANG C Y, LIU G C, YU J, et al. Saliency Detection by Multitask Sparsity Pursuit. IEEE Transactions on Image Processing, 2012, 21(3): 1327-1338. [24] BARTELS R H, STEWART G W. Solution of the Matrix Equation AX+XB=C(F4). Association for Computing Machinery, 1972, 15(9): 820-826. [25] HUANG J, NIE F P, HUANG H. Spectral Rotation Versus K-means in Spectral Clustering // Proc of the 27th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2013: 431-437. [26] LIN Z C, CHEN M M, MA Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. Journal of Structural Biology Mathematical Programming, 2010, 181(2): 116-127. [27] WANG H, YANG Y, LIU B. GMC: Graph-Based Multi-view Clustering [J/OL]. [2019-11-16]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8662703. [28] ZHAI L, ZHU J H, ZHENG Q H, et al. Multi-view Spectral Clustering via Partial Sum Minimisation of Singular Values. Electronics Letters, 2019, 55(6): 314-316.