Calculation Method of RGBD Scene Flow Combining Gaussian Mixture Model and Multi-channel Bilateral Filtering
WANG Zige1,2, LI Yingying1,2, GE Liyue1,3, CHEN Zhen1,2,4, ZHANG Congxuan1,2,4
1. Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang 330063; 2. School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang 330063; 3. School of Information Engineering, Nanchang Hangkong University, Nanchang 330063; 4. Key Laboratory of Non-destructive Testing Technology of Ministry of Education, Nanchang Hangkong University, Nanchang 330063
Abstract:To improve the computational accuracy and robustness of existing RGBD scene flow calculation methods under complex motion scenarios, such as large displacement and motion occlusion, a calculation method of RGBD scene flow combining Gaussian mixture model and multi-channel bilateral filtering is proposed. Firstly, a Gaussian mixture-based optical flow clustering segmentation model is constructed to extract target motion information from optical flow and optimize the results of depth map segmentation layer by layer. Consequently, high-confidence depth motion hierarchical segmentation information is obtained. Then, the RGBD scene flow estimation model combining the Gaussian mixture model and multi-channel bilateral filtering is established by introducing the multi-channel bilateral filtering optimization to overcome the edge-blurring problem of the scene flow computation. Finally, experiments on Middlebury and MPI-Sintel datasets demonstrate that the proposed method exhits higher accuracy and robustness in complex motion scenarios such as large displacements and motion occlusions, particularly in edge-preserving.
[1] 葛利跃,邓士心,龚洁,等.基于运动优化语义分割的变分光流计算方法.模式识别与人工智能, 2021, 34(7): 631-645. (GE L Y, DENG S X, GONG J, et al. Variational Optical Flow Computation Method Based on Motion Optimization Semantic Segmentation. Pattern Recognition and Artificial Intelligence, 2021, 34(7): 631-645.) [2] SCHUSTER R, WASENMÜLLER O, UNGER C, et al. SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation. International Journal of Computer Vision, 2020, 128(2): 527-546. [3] PONTES J K, HAYS J, LUCEY S. Scene Flow from Point Clouds with or Without Learning // Proc of the International Conference on 3D Vision. Washington, USA: IEEE, 2020: 261-270. [4] SAXENA R, SCHUSTER R, WASENMULLER O, et al. PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation // Proc of the IEEE Intelligent Vehicles Symposium. Washington, USA: IEEE, 2019: 324-331. [5] OUYANG B J, RAVIV D. Occlusion Guided Self-Supervised Scene Flow Estimation on 3D Point Clouds // Proc of the International Conference on 3D Vision. Washington, USA: IEEE, 2021: 782-791. [6] VEDULA S, RANDER P, COLLINS R, et al. Three-Dimensional Scene Flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 475-480. [7] 陈震,马龙,张聪炫,等.基于语义分割的双目场景流估计.电子学报, 2020, 48(4): 631-636. (CHEN Z, MA L, ZHANG C X, et al. Binocular Scene Flow Estimation Based on Semantic Segmentation. Acta Electronica Sinica, 2020, 48(4): 631-636.) [8] WEDEL A, RABE C, VAUDREY T, et al. Efficient Dense Scene Flow from Sparse or Dense Stereo Data // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2008: 739-751. [9] RABE C, MÜLLER T, WEDEL A, et al. Dense, Robust, and Accurate Motion Field Estimation from Stereo Image Sequences in Real-Time // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 582-595. [10] BASHA T, MOSES Y, KIRYATI N. Multi-view Scene Flow Estimation: A View Centered Variational Approach. International Journal of Computer Vision, 2013, 101(1): 6-21. [11] MENZE M, GEIGER A. Object Scene Flow for Autonomous Vehicles // Proc of the IEEE Conference on Computer Vision and Pa-ttern Recognition. Washington, USA: IEEE, 2015: 3061-3070. [12] VOGEL C, SCHINDLER K, ROTH S. Piecewise Rigid Scene Flow // Proc of the IEEE Conference on Computer Vision. Wa-shington, USA: IEEE, 2013: 1377-1384. [13] SCHUSTER R, WASENMULLER O, KUSCHK G, et al. SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences // Proc of the IEEE Winter Conference on Applications of Computer Vision. Washington, USA: IEEE, 2018: 1056-1065. [14] ZHOU Z K, FAN X N, SHI P F, et al. R-MSFM: Recurrent Multi-scale Feature Modulation for Monocular Depth Estimating // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 12757-12766. [15] GOTTFRIED J M, FEHR J, GARBE C S. Computing Range Flow from Multi-modal Kinect Data // Proc of the International Sympo-sium on Visual Computing. Berlin, Germany: Springer, 2011: 758-767. [16] QUIROGA J, DEVERNAY F, CROWLEY J. Local/Global Scene Flow Estimation // Proc of the IEEE International Conference on Image Processing. Washington, USA: IEEE, 2013: 3850-3854. [17] HERBST E, REN X F, FOX D. RGB-D Flow: Dense 3-D Motion Estimation Using Color and Depth // Proc of the IEEE Internatio-nal Conference on Robotics and Automation. Washington, USA: IEEE, 2013: 2276-2282. [18] WANG Y C, ZHANG J, LIU Z C, et al. Handling Occlusion and Large Displacement Through Improved RGB-D Scene Flow Estimation. IEEE Transactions on Circuits and Systems for Video Te-chnology, 2016, 26(7): 1265-1278. [19] SUN D Q, SUDDERTH E B, PFISTER H. Layered RGBD Scene Flow Estimation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 548-556. [20] MAYER N, IIG E, HÄUSSER P, et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 4040-4048. [21] EIGEN D, PUHRSCH C, FERGUS R.Depth Map Prediction from a Single Image Using a Multi-scale Deep Network // Proc of the 27th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2014, II: 2366-2374. [22] YANG G S, RAMANAN D. Upgrading Optical Flow to 3D Scene Flow Through Optical Expansion // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 1331-1340. [23] QUIROGA J, BROX T, DEVERNAY F, et al. Dense Semi-Rigid Scene Flow Estimation from RGBD Images // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 567-582. [24] ZHAI M L, XIANG X Z, LÜ N, et al. Optical Flow and Scene Flow Estimation: A Survey. Pattern Recognition, 2021, 114. DOI: 10.1016/j.patcog.2021.107861. [25] SUN D Q, ROTH S, BLACK M J. A Quantitative Analysis of Cu-rrent Practices in Optical Flow Estimation and the Principles Behind Them. International Journal of Computer Vision, 2014, 106(2): 115-137. [26] ZHANG C X, CHEN Z, WANG M R, et al. Robust Non-local TV-L1 Optical Flow Estimation with Occlusion Detection. IEEE Transactions on Image Processing, 2017, 26(8): 4055-4067. [27] DONG C, WANG Z S, HAN J M, et al. A Non-local Propagation Filtering Scheme for Edge-Preserving in Variational Optical Flow Computation. Signal Processing: Image Communication, 2021, 93. DOI: 10.1016/j.image.2021.116143. [28] ZHU Y, LAN Z Z, NEWSAM S, et al. Guided Optical Flow Learning[C/OL].[2022-11-23]. https://arxiv.org/pdf/1702.02295.pdf. [29] LI X X, LIU Y J, JIN H Y, et al. Automatic Layered RGB-D Scene Flow Estimation with Optical Flow Field Constraint. IET Image Processing, 2020, 14(8). DOI: 10.1049/iet-ipr.2020.0230. [30] BROX T, MALIK J. Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513. [31] 张聪炫,裴刘继,陈震,等.FRFCM聚类与深度优化的RGBD场景流计算.电子学报, 2020, 48(7): 1380-1386. (ZHANG C X, PEI L J, CHEN Z, et al. RGBD Scene Flow Estimation Based on FRFCM Clustering and Depth Optimization. Acta Electronica Sinica, 2020, 48(7): 1380-1386.)