模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2013, Vol. 26 Issue (6): 577-583    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
非约束环境下基于小样本的人脸特征精确定位
陈莹1,2,张龙媛1
1.江南大学物联网工程学院轻工过程先进控制教育部重点实验室无锡214122
2.上海交通大学系统控制与信息处理教育部重点实验室上海200240
Precise Facial Feature Localization under Non-Restraint Environment with Limited Training Images
CHEN Ying1,2,ZHANG Long-Yuan1
1. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,School of Internet of Things Engineering,Jiangnan University,Wuxi 214122
2.Key Laboratory of System Control and Information Processing of Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240

全文: PDF (1333 KB)   HTML (0 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对非约束环境下的人脸特征定位问题,在概率框架下提出一种基于小样本的精确定位策略。通过对比分析,提取人脸主要特征的颜色和灰度信息及人脸特征之间的几何约束信息,利用混合高斯模型分别对其进行概率建模。之后建立定位融合策略,不仅考虑每种人脸特征的概率分布,还考虑其周围元素的概率分布特性,及各元素之间的几何约束。实验结果表明,该方法能在少量训练样本图像且样本个体较为单一的条件下,实现人脸主要特征的精确定位,且定位精度高于现有方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈莹
张龙媛
关键词 非约束环境小样本人脸特征定位高斯混合模型    
Abstract:After analyzing the limitation of current methods,a precise localization strategy with limited training data is proposed in a probability framework. Texture and geometry information of facial elements are extracted as model features after comparison analysis with other traditional descriptors. Gaussian mixture model is used for the probability modeling,which describes the distribution of each model features extracted from different facial conditions well. Then,a series of fusion strategies are designed for the facial features localization,which considers the probability distribution of each facial feature,the distribution characters of their surrounding elements and their geometry constraints. The experimental results show that the proposed method can realize precise localization for the facial features with limited training sample images which belong to a single subject,and it outperforms other methods in localization accuracy.
Key wordsNon-Restraint Environment    Small Sample    Facial Feature Localization    Gaussian Mixture Model   
收稿日期: 2012-03-05     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61104213)、江苏省自然科学基金项目(No.BK2011146)资助
作者简介: 陈莹(通讯作者),女,1976年生,博士,副教授,主要研究方向为计算机视觉、信息融合.E-mail:chenying@jiangnan.edu.cn.张龙媛,女,1988年生,硕士研究生,主要研究方向为计算机视觉.
引用本文:   
陈莹,张龙媛. 非约束环境下基于小样本的人脸特征精确定位[J]. 模式识别与人工智能, 2013, 26(6): 577-583. CHEN Ying,ZHANG Long-Yuan. Precise Facial Feature Localization under Non-Restraint Environment with Limited Training Images. , 2013, 26(6): 577-583.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2013/V26/I6/577
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn