模式识别与人工智能
2025年4月13日 星期日   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (3): 252-267    DOI: 10.16451/j.cnki.issn1003-6059.202303005
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
双分支多注意力机制的锐度感知分类网络
姜文涛1, 赵琳琳1, 涂潮2
1.辽宁工程技术大学 软件学院 葫芦岛 125105;
2.辽宁工程技术大学 测绘与地理科学学院 阜新 123032
Double-Branch Multi-attention Mechanism Based Sharpness-Aware Classification Network
JIANG Wentao1, ZHAO Linlin1, TU Chao2
1. School of Software, Liaoning Technical University, Huludao 125105;
2. School of Geomatics, Liaoning Technical University, Fuxin 123032

全文: PDF (3366 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 基于卷积神经网络的图像分类方法的关键是提取有区分性的重点特征.为了提高重点特征的关注度,增强网络泛化能力,文中提出双分支多注意力机制的锐度感知分类网络(Double-Branch Multi-attention Mechanism Based Sharpness-Aware Classification Network, DAMSNet).该网络以ResNet-34残差网络为基础,首先,修改ResNet-34残差网络输入层卷积核尺寸,删除最大池化层,减小原始图像特征的损失.再者,提出双分支多注意力机制模块,嵌入残差分支中,从全局特征和局部特征上提取图像在通道域和空间域的上下文信息.然后,引入锐度感知最小化算法,结合随机梯度下降优化器,同时最小化损失值和损失锐度,寻找具有一致低损失的邻域参数,提高网络泛化能力.在CIFAR-10、CIFAR-100、SVHN数据集上的实验表明,文中网络不仅具有较高的分类精度,而且有效提升泛化能力.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜文涛
赵琳琳
涂潮
关键词 图像分类注意力机制锐度感知最小化(SAM)残差网络    
Abstract:The key to image classification methods based on convolutional neural networks is to extract distinctive important features. To focus on crucial features and enhance the generalization ability of the model, double-branch multi-attention mechanism based sharpness-aware classification network(DAMSNet) is proposed. Based on the ResNet-34 residual network, the size of the convolutional kernel in the input layer of the network is modified and the max pooling layer is removed to reduce the loss of original image features. Then, the double-branch multi-attention mechanism module is designed and embedded into the residual branch to extract the global and local contextual information in both channel and spatial domains. Additionally, sharpness-aware minimization(SAM) algorithm is introduced and combined with stochastic gradient descent optimizer to simultaneously minimize both loss value and loss sharpness, seeking for neighboring parameters with consistently low loss to enhance the generalization ability of the network. Experiments on CIFAR-10, CIFAR-100 and SVHN datasets demonstrate that DAMSNet achieves high classification accuracy and effectively enhances the generalization ability of the network.
Key wordsImage Classification    Attention Mechanism    Sharpness-Aware Minimization(SAM)    Resi-dual Network   
收稿日期: 2023-02-10     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61172144)、辽宁省自然科学基金项目(No.20170540426)、辽宁省教育厅重点基金项目(No.LJYL049)资助
通讯作者: 姜文涛,博士,副教授,主要研究方向为图像处理、模式识别、人工智能.E-mail:704123343@qq.com.   
作者简介: 赵琳琳,硕士研究生,主要研究方向为图像处理、模式识别、人工智能.E-mail:1846788394@qq.com. 涂 潮,博士研究生,主要研究方向为图像处理、模式识别、人工智能.E-mail:745700558@qq.com.
引用本文:   
姜文涛, 赵琳琳, 涂潮. 双分支多注意力机制的锐度感知分类网络[J]. 模式识别与人工智能, 2023, 36(3): 252-267. JIANG Wentao, ZHAO Linlin, TU Chao. Double-Branch Multi-attention Mechanism Based Sharpness-Aware Classification Network. Pattern Recognition and Artificial Intelligence, 2023, 36(3): 252-267.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202303005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I3/252
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn