模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (5): 459-470    DOI: 10.16451/j.cnki.issn1003-6059.202305006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于图注意力和表指针网络的中文事件抽取方法
刘炜1,2, 马亚威1, 彭艳3, 李卫民1
1.上海大学 计算机工程与科学学院 上海 200444;
2.上海人工智能实验室 上海 200232;
3.上海大学 人工智能研究院 上海 200444
Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network
LIU Wei1,2, MA Yawei1, PENG Yan3, LI Weimin1
1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444;
2. Shanghai Artificial Intelligence Laboratory, Shanghai 200232;
3. Institute of Artificial Intelligence, Shanghai University, Shanghai 200444

全文: PDF (823 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network, ATCEE).首先,融合预训练字符向量和词性标注向量作为特征输入,并利用双向长短期记忆网络,得到事件文本的强化语义特征.再将字符级建模的依存句法图引入图注意力网络,捕获文本中各组成成分的长距离依赖关系.然后,使用表填充的方法进行特征融合,进一步增强触发词和其对应的所有论元之间的依赖性.最后,将学习得到的表特征输入全连接层和表指针网络层,进行触发词和论元的联合抽取,使用表指针网络对论元边界进行解码,更好地识别长论元实体.实验表明:ATCEE在ACE2005和DuEE1.0这两个中文基准数据集上都有明显的性能提升,并且字符级依存特征和表填充策略在一定程度上可以解决论元角色重叠问题.ATCEE源代码地址如下:https://github.com/event6/ATCEE.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘炜
马亚威
彭艳
李卫民
关键词 中文事件抽取论元角色重叠图注意力网络表填充表指针网络    
Abstract:The existing Chinese event extraction methods suffer from inadequate modeling of dependencies between an event trigger word and all its corresponding arguments, which results in weakened information interaction within an event and poor performance in argument extraction, especially when there is argument role overlap. To address this issue, a Chinese event extraction method based on graph attention and table pointer network(ATCEE) is proposed in this paper. Firstly,pre-trained character vectors and part-of-speech tagging vectors are fused as feature inputs. Then, the enhanced feature of the event text is obtained by a bidirectional long short-term memory network. Next, a character-level dependency syntax graph is constructed and introduced into multi-layer graph attention network to capture long-range dependencies among constituents of the event text. Subsequently, dependencies between an event trigger word and all its corresponding arguments are further enhanced via a table filling strategy. Finally, the learned table feature is input into a fully connected layer and table pointer network layer for joint extraction of trigger words and arguments. Consequently, long argument entities can be identified better by decoding argument boundaries with a table pointer network. Experimental results indicate that ATCEE method significantly outperforms previous event extraction methods on Chinese benchmark datasets, ACE2005 and DuEE1.0. In addition, the overlap problem of the event argument role is solved by introducing character-level dependency feature and table filling strategy to some extent. The source code of ATCEE can be found at the following website: https://github.com/event6/ATCEE.
Key wordsChinese Event Extraction    Argument Role Overlap    Graph Attention Network    Table Fil-ling    Table Pointer Network   
收稿日期: 2022-12-12     
ZTFLH: TP391  
基金资助:国家自然科学基金重大项目(No.61991410)、浦江国家实验室项目(No.P22KN00391)资助
通讯作者: 刘 炜 ,博士,副研究员,主要研究方向为自然语言处理、知识表示与推理、事件本体、知识图谱.E-mail:liuw@shu.edu.cn.   
作者简介: 马亚威,硕士研究生,主要研究方向为事件抽取、自然语言处理.E-mail:mayawei@shu.edu.cn. 彭 艳,博士,教授,主要研究方向为海洋无人艇的建模和控制、现场机器人、运动系统.E-mail:pengyan@shu.edu.cn. 李卫民,博士,教授,主要研究方向为数据智能、生物信息、智慧医疗、社交网络.E-mail:wmli@shu.edu.cn.
引用本文:   
刘炜, 马亚威, 彭艳, 李卫民. 基于图注意力和表指针网络的中文事件抽取方法[J]. 模式识别与人工智能, 2023, 36(5): 459-470. LIU Wei, MA Yawei, PENG Yan, LI Weimin. Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network. Pattern Recognition and Artificial Intelligence, 2023, 36(5): 459-470.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202305006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I5/459
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn