模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (5): 471-482    DOI: 10.16451/j.cnki.issn1003-6059.202305007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
用于多跳阅读理解的双视图对比学习网络
陈谨雯1,2, 陈羽中1,2
1.福州大学 计算机与大数据学院 福州 350108;
2.福州大学 福建省网络计算与智能信息处理重点实验室 福州 350108
Dual View Contrastive Learning Networks for Multi-hop Reading Comprehension
CHEN Jinwen1,2, CHEN Yuzhong1,2
1. College of Computer and Data Science, Fuzhou University, Fuzhou 350108;
2. Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350108

全文: PDF (774 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 多跳阅读理解是机器阅读理解的重要任务,旨在从多段文档中构造一条多跳推理链,以此结合多文档中证据回答问题.近年来,图神经网络广泛应用于多跳阅读理解任务,但仍存在多文档推理链的上下文互信息获取不充分、部分答案仅因为与题目相似就被误判为候选答案而引入噪声的缺陷.针对上述问题,文中提出用于多跳阅读理解的双视图对比学习网络(Dual View Contrastive Learning Networks, DVCGN).首先,提出基于异构图的节点级正负样本对比学习方法,对异构图进行节点级损坏和特征级损坏,构造双视图.被损坏的两个视图经图注意力网络迭代后生成两个更新后的视图,DVCGN通过最大化双视图节点表示相似性学习节点表示,获取丰富的上下文语义信息,精确建模当前节点表示及其与推理链其余节点关系,有效辨别多粒度上下文信息及干扰信息,为推理链构造更丰富的互信息.然后,提出问题引导的图节点剪枝方法,充分利用问题信息筛选答案实体节点,缩小候选答案范围,减弱证据句子中相似性表述带来的噪声.在HOTPOTQA数据集上的实验表明,DVCGN的性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈谨雯
陈羽中
关键词 机器阅读理解多跳阅读理解异构图图注意力网络对比学习    
Abstract:Multi-hop reading comprehension is an important task in machine reading comprehension, aiming at constructing a multi-hop reasoning chain from multiple documents to answer questions with requirement of combining evidence from multiple documents. Graph neural networks are widely applied to multi-hop reading comprehension tasks. However, there are still shortcomings in terms of insufficient acquisition of context mutual information for the multiple document reasoning chain and the introduction of noise due to some candidate answers being mistakenly judged as correct answers solely based on their similarity to the question. To address these issues, dual view contrastive learning networks(DVCGN) for multi-hop reading comprehension are proposed. Firstly, a heterogeneous graph-based node-level contrastive learning method is employed. Positive and negative sample pairs are generated at the node level, and both node-level and feature-level corruptions are introduced to the heterogeneous graph to construct dual views. The two corrupted views are updated iteratively through a graph attention network. DVCGN maximizes the similarity of node representations in dual views to learn node representations , obtain rich contextual semantic information and accurately model the current node representation and its relationship with the remaining nodes in the reasoning chain. Consequently, multi-granularity contextual information is effectively distinguished from interference information and richer mutual information is constructed for the reasoning chain. Furthermore, a question-guided graph node pruning method is proposed. It leverages question information to filter answer entity nodes, narrowing down the range of candidate answers and mitigating noise caused by similarity expressions in evidence sentences. Finally, experimental results on HOTPOTQA dataset demonstrate the superior performance of DVCGN.
Key wordsMachine Reading Comprehension    Multi-hop Reading Comprehension    Heterogeneous Graph    Graph Attention Networks    Contrastive Learning   
收稿日期: 2023-01-20     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61672158)、福建省自然科学基金项目(No.2020J01494)、福建省高校产学合作项目(No.2021H6022)资助
通讯作者: 陈羽中,博士,教授,主要研究方向为计算智能、自然语言处理、数据挖掘.E-mail:yzchen@fzu.edu.cn.   
作者简介: 陈谨雯,硕士研究生,主要研究方向为自然语言处理、机器阅读理解.E-mail:1272668035@qq.com.
引用本文:   
陈谨雯, 陈羽中. 用于多跳阅读理解的双视图对比学习网络[J]. 模式识别与人工智能, 2023, 36(5): 471-482. CHEN Jinwen, CHEN Yuzhong. Dual View Contrastive Learning Networks for Multi-hop Reading Comprehension. Pattern Recognition and Artificial Intelligence, 2023, 36(5): 471-482.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202305007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I5/471
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn