模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (10): 953-966    DOI: 10.16451/j.cnki.issn1003-6059.202310008
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
动态环境下基于延迟语义的RGB-D SLAM算法
王浩1, 周申超1, 方宝富1
1.合肥工业大学 计算机与信息学院 合肥 230601
RGB-D SLAM Algorithm Based on Delayed Semantic Information in Dynamic Environment
WANG Hao1, ZHOU Shenchao1, FANG Baofu1
1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601

全文: PDF (6538 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 目前,将分割网络与SLAM(Simultaneous Localization and Mapping)结合已成为解决视觉SLAM不能应用于动态环境的主流方案之一,但是SLAM系统受到分割网络处理速度的限制,无法保证实时运行.为此,文中提出基于延迟语义的RGB-D SLAM算法.首先,并行运行跟踪线程与分割线程,为了得到最新的延迟语义信息,采取跨帧分割的策略处理图像,跟踪线程根据延迟语义信息实时生成当前帧的语义信息.然后,结合成功跟踪计数(STC)与极线约束,筛选当前帧动态点的集合,并确定环境中先验动态物体的真实运动状态.若确定该物体在移动,继续将物体区域细分为矩形网格,以网格为最小单位剔除动态特征点.最后,利用静态特征点追踪相机位姿并构建环境地图.在TUM RGB-D动态场景数据集及真实场景上的实验表明文中算法在大部分数据集上表现较优,由此验证算法的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩
周申超
方宝富
关键词 同时定位与地图构建(SLAM)动态环境实例分割网络延迟语义信息网格聚类    
Abstract:Visual simultaneous localization and mapping(SLAM) cannot be applied to dynamic environment. The mainstream solution is to combine segmentation network and SLAM. However, real-time operation of SLAM systems is not guaranteed due to the processing speed constraints of segmentation network. Therefore, a RGB-D SLAM algorithm based on delayed semantic information in dynamic environment is proposed. Firstly, tracking and segmentation threads run in parallel. To obtain the latest delayed semantic information, a cross-frame segmentation strategy is employed for image processing, and real-time semantic information for the current frame is generated by the tracking thread according to the delaysemantic information. Then, the dynamic point set of the current frame is selected and the real motion state of the prior dynamic object in the environment is determined by combining successful tracking count and epipolar constraints. When the object is determined as moving, the object area is further subdivided into rectangular grids, and dynamic feature points are removed with the grid as the minimum unit. Finally, the camera pose is tracked by static feature points and an environment map is constructed. Experiments on TUM RGB-D dynamic scene dataset and real scenes show that the proposed algorithm performs well and its effectiveness is verified.
Key wordsSimultaneous Localization and Mapping(SLAM)    Dynamic Environment    Instance Segmentation Network    Delayed Semantic Information    Grid Clustering   
收稿日期: 2023-09-08     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61872327)、安徽省自然科学基金项目(No.2308085MF203)、安徽高校协同创新项目(No.GXXT-2022-055)、民航飞行技术与飞行安全重点实验室重点项目(No.FZ2022ZZ02)、民航飞行技术与飞行安全重点实验室开放基金项目(No.FZ2022KF09)资助
通讯作者: 方宝富,博士,副教授,主要研究方向为智能机器人系统.E-mail:fangbf@hfut.edu.cn.   
作者简介: 王 浩,博士,教授,主要研究方向为分布式智能系统、机器人.E-mail:jsjxwangh@hfut.edu.cn.周申超,硕士研究生,主要研究方向为视觉SLAM.E-mail:1103944960@qq.com.
引用本文:   
王浩, 周申超, 方宝富. 动态环境下基于延迟语义的RGB-D SLAM算法[J]. 模式识别与人工智能, 2023, 36(10): 953-966. WANG Hao, ZHOU Shenchao, FANG Baofu. RGB-D SLAM Algorithm Based on Delayed Semantic Information in Dynamic Environment. Pattern Recognition and Artificial Intelligence, 2023, 36(10): 953-966.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202310008      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I10/953
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn