模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (2): 162-171    DOI: 10.16451/j.cnki.issn1003-6059.202402005
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于图像低维特征融合的航拍小目标检测模型
蔡逢煌1, 张家翔1, 黄捷1
1.福州大学 电气工程与自动化学院 福州 350108
Model for Small Object Detection in Aerial Photography Based on Low Dimensional Image Feature Fusion
CAI Fenghuang1, ZHANG Jiaxiang1, HUANG Jie1
1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108

全文: PDF (2828 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡逢煌
张家翔
黄捷
关键词 You Only Look Once Version5(YOLOv5)小目标检测注意力机制损失函数    
Abstract:To address the challenges of significant changes in the field of view and complex spatiotemporal information in unmanned aerial vehicle aerial image target detection, a model for small object detection in aerial photography based on low dimensional image feature fusion is presented grounded on the YOLOv5(you only look once version 5) architecture. Coordinate attention is introduced to improve the inverted residuals of MobileNetV3, thereby increasing the spatial dimension information of images while reducing parameters of the model. The YOLOv5 feature pyramid network structure is improved to incorporate feature images from shallow networks. The ability of the model to represent low-dimensional effective information of images is enhanced, and consequently the detection accuracy of the proposed model for small objects is improved. To reduce the impact of complex background in the image, the parameter-free average attention module is introduced to focus on both spatial attention and channel attention. VariFocal Loss is adopted to reduce the weight proportion of negative samples in the training process. Experiments on VisDrone dataset demonstrate the effectiveness of the proposed model. The detection accuracy is effectively improved while the model complexity is significantly reduced.
Key wordsYou Only Look Once Version 5(YOLOv5)    Small Target Detection    Attention Mechanism    Loss Function   
收稿日期: 2023-10-16     
ZTFLH: TP181  
基金资助:国家自然科学基金项目(No.92367109)、国家自然科学基金青年科学基金项目(No.62301163)资助
通讯作者: 黄 捷,博士,教授,主要研究方向为模式识别、智能系统、多智能体系统.E-mail:jie.huang@fzu.edu.cn.   
作者简介: 蔡逢煌,博士,教授,主要研究方向为机器学习、电力电子变换器控制.E-mail:caifenghuang@fzu.edu.cn. 张家翔,硕士研究生,主要研究方向为智能视觉、无人系统.E-mail:zjx4350@163.com.
引用本文:   
蔡逢煌, 张家翔, 黄捷. 基于图像低维特征融合的航拍小目标检测模型[J]. 模式识别与人工智能, 2024, 37(2): 162-171. CAI Fenghuang, ZHANG Jiaxiang, HUANG Jie. Model for Small Object Detection in Aerial Photography Based on Low Dimensional Image Feature Fusion. Pattern Recognition and Artificial Intelligence, 2024, 37(2): 162-171.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202402005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I2/162
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn