模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (5): 398-409    DOI: 10.16451/j.cnki.issn1003-6059.202405002
目标检测识别与对抗 最新目录| 下期目录| 过刊浏览| 高级检索 |
特征增强与残差重塑的多重一致性约束半监督视频动作检测
胡正平1,2, 张琦明1, 王雨露1, 张和浩1, 邸继锐1
1.燕山大学 信息科学与工程学院 秦皇岛 066004;
2.燕山大学 河北省信息传输与信号处理重点实验室 秦皇岛 066004
Multi-consistency Constrained Semi-supervised Video Action Detection Based on Feature Enhancement and Residual Reshaping
HU Zhengping1,2, ZHANG Qiming1, WANG Yulu1, ZHANG Hehao1, DI Jirui1
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004;
2. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004

全文: PDF (1239 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 一致性正则化半监督视频动作检测方法对原始数据和增广数据进行特征表示时容易引起两类数据间判别域偏差,导致判别结果无法拟合.针对该问题,文中提出特征增强与残差重塑的多重一致性约束半监督视频动作检测方法.首先,将基础动作特征描述子在时空维进行连续性增强编码,获取视频动作理解中至关重要的上下文信息.然后,在通过残差特征重塑模块获得多尺度残差信息的同时进行特征重塑.为了降低不同数据间的判别偏差,分别从分类特征与动作定位特征角度对原始数据和增广数据施加多重一致性约束,实现模型对增广数据和原始数据判别结果和特征表示的匹配.最后,在JHMDB-21、UCF101-24数据集上的实验表明,文中方法能有效提高少样本标记条件下视频动作检测准确度,具有较强的竞争力.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡正平
张琦明
王雨露
张和浩
邸继锐
关键词 半监督学习视频动作检测特征增强多重一致性约束    
Abstract:The feature representations of both original data and augmented data in the consistency regularized semi-supervised video action detection method tend to induce discriminative domain bias between two types of data, thereby resulting in inadequate fitting of the discriminative results. To address this issue, a multi-consistency constrained semi-supervised video action detection method based on feature enhancement and residual reshaping is proposed in this paper. Firstly, the basic action feature descriptors are continuously enhanced and encoded in the spatiotemporal dimension to obtain crucial contextual information for video action understanding. Subsequently, a residual feature reshaping module is employed to obtain multi-scale residual information while reshaping the features. To reduce the discriminative bias between different types of data, multiple consistency constraints are applied to the original data and the augmented data from the perspectives of classification features and action localization features, achieving a match between discriminative results and feature representation of the augmented data and the original data. Experimental results on JHMDB-21 and UCF101-24 datasets demonstrate the effectiveness of the proposed method in improving video action detection accuracy under the condition of limited labeled samples and strong competitiveness.
Key wordsSemi-supervised Learning    Video Action Detection    Feature Enhancement    Multiple Consistency Constraints   
收稿日期: 2024-04-03     
ZTFLH: TP391.41  
基金资助:国家自然科学基金项目(No.61771420)、国家自然科学基金青年科学基金项目(No.62001413)资助
通讯作者: 胡正平,博士,教授,主要研究方向为模式识别、视频处理.E-mail:hzp@ysu.edu.cn.   
作者简介: 张琦明,硕士研究生,主要研究方向为半监督视频动作检测.E-mail:zhangqiming@stumail.ysu.edu.cn.王雨露,硕士研究生,主要研究方向为基于骨骼的人体动作识别.E-mail:hiwangyulu@163.com.张和浩,博士研究生,主要研究方向为3D人体姿态估计.E-mail:zhanghh@stumail.ysu.edu.cn.邸继锐,博士研究生,主要研究方向为细粒度动作识别.E-mail:dijirui123@163.com.
引用本文:   
胡正平, 张琦明, 王雨露, 张和浩, 邸继锐. 特征增强与残差重塑的多重一致性约束半监督视频动作检测[J]. 模式识别与人工智能, 2024, 37(5): 398-409. HU Zhengping, ZHANG Qiming, WANG Yulu, ZHANG Hehao, DI Jirui. Multi-consistency Constrained Semi-supervised Video Action Detection Based on Feature Enhancement and Residual Reshaping. Pattern Recognition and Artificial Intelligence, 2024, 37(5): 398-409.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202405002      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I5/398
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn