模式识别与人工智能
2025年4月17日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (12): 1107-1120    DOI: 10.16451/j.cnki.issn1003-6059.202412006
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
轻量化特征点及可变形描述符提取网络
方宝富1,2, 张克傲1,2, 王浩1,2, 袁晓辉3
1.合肥工业大学 计算机与信息学院 合肥 230601
2.合肥工业大学 大数据知识工程教育部重点实验室 合肥 230009
3.Department of Computer Science and Engineering, University of North Texas, Denton, Texas 76201, United States
LKDD-Net: Lightweight Keypoint and Deformable Descriptor Extraction Network
FANG Baofu1,2, ZHANG Keao1,2, WANG Hao1,2, YUAN Xiaohui3
1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601
2. Key Laboratory of Knowledge Engineering with Big Data of Ministry of Education of China, Hefei University of Technology, Hefei 230009
3. Department of Computer Science and Engineering, University of North Texas, Denton, Texas 76201, United States

全文: PDF (5169 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 特征点提取是视觉同时定位与建图(Visual Simultaneous Localization and Mapping, VSLAM)的重要步骤之一,近年来出现的基于深度学习的特征点提取方法通常效率较低,无法满足实时性要求,也不能提供描述符所需的几何不变性.为此,文中提出轻量化特征点及可变形描述符提取网络(Lightweight Keypoint and Deformable Descriptor Extraction Network, LKDD-Net),在主干网络中引入轻量化网络模块,提高特征提取效率.LKDD-Net可同时获取特征点位置和可变形描述符.为了验证LKDD-Net的有效性,设计视觉里程计系统.在HPatches、TUM RGB-D公共数据集上的实验表明,LKDD-Net可在GPU上实时运行,特征点提取时间仅为8.3 ms,同时在各种场景中保持高精度和强鲁棒性,而且其构成的视觉里程计系统性能较优.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
方宝富
张克傲
王浩
袁晓辉
关键词 特征点提取描述符轻量化网络视觉里程计    
Abstract:Keypoint extraction is a crucial step in visual simultaneous localization and mapping(VSLAM). Existing deep learning based keypoint extraction methods suffer from low efficiency and fail to meet real-time requirements. Furthermore, they do not provide the geometric invariance required by descriptors. To address this issue, a lightweight keypoint and deformable descriptor extraction network(LKDD-Net) is proposed. A lightweight network module is introduced in the backbone network to improve the efficiency of feature extraction, and then the deformable convolution module is applied to the descriptor decoder to extract deformable descriptors. LKDD-Net is capable of simultaneously obtaining both keypoint locations and deformable descriptors. To study the effectiveness of LKDD-Net, a visual odometry system based on LKDD-Net is designed. Experiments on HPatches public dataset and TUM public dataset show that LKDD-Net can run in real-time on GPUs with keypoint extraction time being as low as 8.3 ms, while maintaining high accuracy in various scenarios. The performance of the visual odometry system composed of LKDD-Net is superior to traditional vision and VSLAM systems based on deep learning keypoint extraction. The proposed method successfully tracks all six sequences in TUM public dataset, demonstrating stronger robustness.
Key wordsKeypoint Extraction    Descriptor    Lightweight Network    Visual Odometry   
收稿日期: 2024-11-08     
ZTFLH: TP 399  
基金资助:安徽省自然科学基金项目(No.2308085MF203)、安徽高校协同创新项目(No.GXXT-2022-055)、民航飞行技术与飞行安全重点实验室重点项目(No.FZ2022ZZ02)资助
通讯作者: 方宝富,博士,副教授,主要研究方向为智能机器人系统.E-mail:fangbf@hfut.edu.cn.   
作者简介: 张克傲,硕士研究生,主要研究方向为视觉SLAM.E-mail:1835430535@qq.com.
王 浩,博士,教授,主要研究方向为分布式智能系统、机器人.E-mail:jsjxwangh@hfut. edu.cn.
袁晓辉,博士,教授,主要研究方向为计算机视觉、机器学习、人工智能.E-mail:xiaohui.yuan@unt.edu.
引用本文:   
方宝富, 张克傲, 王浩, 袁晓辉. 轻量化特征点及可变形描述符提取网络[J]. 模式识别与人工智能, 2024, 37(12): 1107-1120. FANG Baofu, ZHANG Keao, WANG Hao, YUAN Xiaohui. LKDD-Net: Lightweight Keypoint and Deformable Descriptor Extraction Network. Pattern Recognition and Artificial Intelligence, 2024, 37(12): 1107-1120.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202412006      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I12/1107
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn