模式识别与人工智能
2025年4月17日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (12): 1121-1134    DOI: 10.16451/j.cnki.issn1003-6059.202412007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
生物拓扑语义增强的药物与微生物异质图表征学习
郭全明1, 郭延哺1,2, 宋胜利1, 陈紫豪1, 朱昊坤1
1.郑州轻工业大学 软件学院 郑州 450002
2.东南大学 江苏省网络群体智能重点实验室 南京 211189
Biological Topology-Semantic Enhanced Heterogeneous Graph Representation Learning for Drug-Microbe Interactions
GUO Quanming1, GUO Yanbu1,2, SONG Shengli1, CHEN Zihao1, ZHU Haokun1
1. College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
2. Jiangsu Provincial Key Laboratory of Networked Collective Intelligence, Southeast University, Nanjing 211189

全文: PDF (1060 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

微生物与药物的相互作用对人体健康具有重要影响.现有关联预测方法未充分建模异质图的内部节点信息,且忽略不同元路径实例蕴含信息的重要性.为此,文中提出生物拓扑语义增强的药物与微生物异质图表征学习方法(Biological Topology-Semantic Enhanced Heterogeneous Graph Representation Learning for Drug-Microbe Interactions, HGRL),提取高阶混合邻域网络嵌入表示,推理微生物与药物间的关联信息.首先,整合微生物与药物相似性及关联数据,构建加权双向异质网络和多视图元路径感知网络.然后,结合变换器门控图网络与贝叶斯高斯混合加权对比学习,提取复杂生物网络的拓扑语义和嵌入特征.基于对抗性负采样的预测结果表明,HGRL在微生物-药物关联预测中性能较优,可作为预测候选药物相关微生物的可靠工具.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭全明
郭延哺
宋胜利
陈紫豪
朱昊坤
关键词 异质图表征学习复杂生物网络多视图元路径对比学习微生物-药物关联预测    
Abstract

The interaction between microorganisms and drugs significantly impacts human health. In existing association prediction methods, the internal node information of heterogeneous graphs is not adequately modeled and the importance of different meta-path instances is overlooked. Hence, a biological topology-semantic enhanced heterogeneous graph representation learning for drug-microbe interactions(HGRL) method is proposed. High-order mixed neighborhood network embedding representations are extracted to infer microorganism-drug associations. Microorganism-drug similarity and association data are integrated to construct a weighted bidirectional heterogeneous network and a multi-view meta-path aware network. The transformer-gated graph network is combined with Bayesian Gaussian mixture weighted contrastive learning to extract topological semantics and embedding features of complex biological networks. Prediction based on adversarial negative sampling demonstrates that HGRL outperforms existing methods in microorganism-drug association prediction and is a reliable tool for inferring microorganisms associated with candidate drugs.

Key wordsHeterogeneous Graph Representation Learning    Complex Biological Network    Multi-view Meta-Path    Contrastive Learning    Microbe-Drug Association Prediction   
收稿日期: 2024-11-04     
ZTFLH: TP 391  
基金资助:

国家自然科学基金项目(No.62403437)、河南省科技攻关项目(No.242102211039)资助

通讯作者: 宋胜利,博士,教授,主要研究方向为智能计算及应用.E-mail:slsong@126.com.   
作者简介: 郭全明,硕士研究生,主要研究方向为生物信息计算、人工智能.E-mail:gqm_99@163.com
陈紫豪,硕士研究生,主要研究方向为生物信息计算、人工智能.E-mail:c15736774662@163.com.
朱昊坤,硕士研究生,主要研究方向为生物信息计算、人工智能.E-mail:zhuhaokun2000@163.com.
引用本文:   
郭全明, 郭延哺, 宋胜利, 陈紫豪, 朱昊坤. 生物拓扑语义增强的药物与微生物异质图表征学习[J]. 模式识别与人工智能, 2024, 37(12): 1121-1134. GUO Quanming, GUO Yanbu, SONG Shengli, CHEN Zihao, ZHU Haokun. Biological Topology-Semantic Enhanced Heterogeneous Graph Representation Learning for Drug-Microbe Interactions. Pattern Recognition and Artificial Intelligence, 2024, 37(12): 1121-1134.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202412007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I12/1121
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn