模式识别与人工智能
2025年4月2日 星期三   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (9): 811-823    DOI: 10.16451/j.cnki.issn1003-6059.202409005
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于多类型语音信息分层融合的帕金森病检测模型
吴迪1, 季薇1, 郑慧芬2, 李云3
1.南京邮电大学 通信与信息工程学院 南京 210003;
2.南京医科大学附属老年医院 南京 210009;
3.南京邮电大学 计算机学院 南京 210023
Parkinson's Disease Detection Model Based on Hierarchical Fusion of Multi-type Speech Information
WU Di1, JI Wei1, ZHENG Huifen2, LI Yun3
1. School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003;
2. Geriatric Hospital of Nanjing Medical University, Nanjing 210009;
3. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023

全文: PDF (877 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 用于帕金森病检测的语音数据通常包括持续元音、重复音节及情景对话等类型.已有模型大多采用单一类型的语音数据作为输入,容易受到噪声干扰,鲁棒性无法保证.有效整合不同类型语音数据,提取至关重要的病理信息,是当前帕金森病检测任务面临的挑战之一.文中提出基于多类型信息分层融合的帕金森病检测模型,旨在提取全面的病理信息,实现较优的检测性能.首先,针对不同类型的帕金森病语音数据,分别进行多种声学特征的提取.然后,设计挖掘多类型声学特征深层信息的表示学习方案,提取调音和韵律信息,精准反映声学特征中潜在的病理信息.进而针对两类信息,设计解耦的表示学习空间,分别提取各自的私有特征,同时学习它们的共有表示.最后,设计跨类型的注意力分层融合模块,利用交叉注意力机制,以不同粒度交互的方式逐步融合共有表示和私有表示,提升帕金森病检测性能.在公开的意大利语帕金森病语音数据集和自采的汉语帕金森病语音数据集上的实验表明,文中方法性能提升明显.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴迪
季薇
郑慧芬
李云
关键词 帕金森病多类型语音对比学习分层融合    
Abstract:Speech data for Parkinson's disease detection typically includes sustained vowels, repeated syllables and contextual dialogues. Most of the existing models adopt a single type of speech data as input, making them susceptible to noise interference and a lack of robustness. The current challenge of Parkinson's disease detection is effectively integrating different types of speech data and extracting critical pathological information. In this paper, a Parkinson's disease detection method based on hierarchical fusion of multi-type speech information is proposed, aiming to extract rich and comprehensive pathological information and achieve better detection performance. Firstly, various acoustic features are extracted for different types of Parkinson's disease speech data. Then, a representation learning scheme is designed to mine deep information from multiple types of acoustic features. The underlying pathological information in acoustic features is reflected more accurately by extracting articulation and rhythm information. Furthermore, a decoupled representation learning space is designed for two mentioned types of information above to extract their respective private features, while learning their shared representation simultaneously. Finally, a cross-type attention hierarchical fusion module is designed to progressively fuse shared and private representations using cross-attention mechanisms at different granularities, aiming to enhance Parkinson's disease detection performance. Experiments on publicly available Italian Parkinson's disease speech dataset and a self-collected Chinese Parkinson's disease speech dataset demonstrate the accuracy improvement of the proposed approach.
Key wordsParkinson's Disease    Multi-type Speech    Contrastive Learning    Hierarchical Fusion   
收稿日期: 2024-04-24     
ZTFLH: TP 391  
基金资助:江苏省高校基础科学(自然科学)重大项目(No.21KJA520003)资助
通讯作者: 季 薇,博士,教授,主要研究方向为信号与信息处理、机器学习.E-mail:jiwei@njupt.edu.cn.   
作者简介: 吴 迪,硕士研究生,主要研究方向为机器学习、信号处理.E-mail:2799887357@qq.com.郑慧芬,博士,主任医师,主要研究方向为帕金森病及相关运动障碍性疾病.E-mail:y020627@126.com.李 云,博士,教授,主要研究方向为机器学习、模式识别.E-mail:liyun@njupt.edu.cn.
引用本文:   
吴迪, 季薇, 郑慧芬, 李云. 基于多类型语音信息分层融合的帕金森病检测模型[J]. 模式识别与人工智能, 2024, 37(9): 811-823. WU Di, JI Wei, ZHENG Huifen, LI Yun. Parkinson's Disease Detection Model Based on Hierarchical Fusion of Multi-type Speech Information. Pattern Recognition and Artificial Intelligence, 2024, 37(9): 811-823.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202409005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I9/811
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn