模式识别与人工智能
2025年8月7日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2025, Vol. 38 Issue (3): 233-251    DOI: 10.16451/j.cnki.issn1003-6059.202503004
综述与评论 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于不同学习范式的深度图聚类方法综述
周丽娟1, 吴梦琪1, 李欣冉1, 牛常勇1
1.郑州大学 计算机与人工智能学院 郑州 450001
A Survey of Deep Graph Clustering Methods Based on Different Learning Paradigms
ZHOU Lijuan1, WU Mengqi1, LI Xinran1, NIU Changyong1
1. School of Computer Science and Artificial Intelligence, Zheng-zhou University, Zhengzhou 450001

全文: PDF (1023 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 图聚类方法旨在使用无监督方式将图节点划分到不同类别中,用于发现复杂系统中的隐藏模式、社区结构和组织关系.现有方法通过不同的学习范式构建自监督模式,指导图表示学习并实现聚类,因此学习范式是图聚类方法的关键,但现有综述少有从学习范式的角度讨论图聚类方法.因此,文中基于不同学习范式总结图聚类方法的研究进展,将图聚类方法分类为重构式图聚类、对比式图聚类、对抗式图聚类和混合式图聚类.基于研究范围和聚类效果,重点探讨重构式图聚类和对比式图聚类.在单关系数据集和多关系数据集上的聚类结果表明,对比式图聚类在单关系数据集上表现较优,而重构式图聚类在多关系数据集上表现较优.最后,总结图聚类领域面临的挑战,展望未来的研究方向,并介绍深度图聚类方法在各个领域的应用.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周丽娟
吴梦琪
李欣冉
牛常勇
关键词 图聚类自监督训练图神经网络图对比学习图重构学习    
Abstract:Graph clustering aims to partition graph nodes into different categories in an unsupervised manner, facilitating the discovery of hidden patterns, community structures and organizational relationships within complex systems. Existing methods construct different self-supervised information through various learning paradigms to guide graph representation learning and promote clustering. Therefore, the learning paradigm is the key to clustering algorithms. However, few existing reviews discuss graph clustering from the perspective of different learning paradigms. In this paper, the research progress on graph clustering based on different learning paradigms is summarized. Clustering methods are classified into reconstructive graph clustering, contrastive graph clustering, adversarial graph clustering and hybrid graph clustering. Considering the research scope and clustering effect, reconstructive graph clustering and contrastive graph clustering are discussed in detail. Graph clustering results on single-relation and multi-relation datasets are compared. The results show that contrastive graph clustering performs better on single-relation datasets, while reconstructive graph clustering is more effective on multi-relation datasets. Finally, the challenges faced in the graph clustering field are summarized, and future research directions are pointed out as well. The applications of deep graph clustering across various domains are additionally introduced.
Key wordsGraph Clustering    Self-Supervised Training    Graph Neural Networks    Graph Contrastive Learning    Graph Reconstructive Learning   
收稿日期: 2024-12-24     
ZTFLH: TP183  
基金资助:国家自然科学基金项目(No.62006211)资助
通讯作者: 牛常勇,博士,副教授,主要研究方向为基于云平台的大规模数据管理和分析、机器学习尤其是深层学习算法研究及应用、移动终端系统研发.E-mail:iecyniu@zzu.edu.cn.   
作者简介: 周丽娟,博士,副教授,主要研究方向为计算机视觉、机器学习、多模态处理.E-mail:ieljzhou@zzu.edu.cn.
吴梦琪,硕士研究生,主要研究方向为数据挖掘、属性图聚类、对比学习.E-mail:mengqiwuzzu@163.com.
李欣冉,硕士研究生,主要研究方向为多模态推荐、机器学习.E-mail:lixinran@gs.zzu.edu.cn.
引用本文:   
周丽娟, 吴梦琪, 李欣冉, 牛常勇. 基于不同学习范式的深度图聚类方法综述[J]. 模式识别与人工智能, 2025, 38(3): 233-251. ZHOU Lijuan, WU Mengqi, LI Xinran, NIU Changyong. A Survey of Deep Graph Clustering Methods Based on Different Learning Paradigms. Pattern Recognition and Artificial Intelligence, 2025, 38(3): 233-251.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202503004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2025/V38/I3/233
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn