模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2011, Vol. 24 Issue (3): 376-384    DOI:
论文 最新目录| 下期目录| 过刊浏览| 高级检索 |
一种加权学习矢量量化算法
A Weighted Learning Vector Quantization Algorithm

全文: PDF (627 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对传统学习矢量量化算法没有考虑属性的重要度差异的问题,提出一种加权学习矢量量化算法.该算法为每一维属性引入一个权重系数,用其表征相应属性在分类过程中的重要程度,并与权向量一同更新.利用输入样本和获胜神经元之间的修正距离的均值,控制权重系数更新的阈值及步长.距离均值确保了更新过程的稳定性,且无需进行权重系数的归一化操作.UCI机器学习数据库中6组数据的实验结果表明,该算法能够有效给出数据的本质属性,尤其是局部型权重系数.与传统学习矢量量化算法及其改进算法相比,识别率高、性能稳定、计算复杂度低.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
安兴
刘志文
时永刚
吕传峰
关键词 模式识别学习矢量量化加权学习矢量量化机器学习属性加权    
Abstract:In view of the fact that difference of the importance of different dimensions is not taken into account in traditional learning vector quantization (LVQ) algorithms, a weighted LVQ algorithm is presented. In the proposedalgorithm, a set of additional weights is introduced for each neuron to indicate the importance of their respective dimensions.The weights are updated adaptively regarding the fitness of their corresponding neuron over the training iteration. The updating thresholds and step are decided according to the mean value of distance of all dimensions. Furthermore, according to the mean value of distance, it gets better stability and updates the weights without normalization. Six well known databases from UCI machine learning repository are selected to verify the performance of the proposed weighted LVQ (WLVQ) algorithm. The experimental results show that the proposed method gains insight to the role of the data dimensions, especially local weights, and yields the superior performance in recognition rate, stability, and computational complexity.
Key wordsPattern Recognition    Learning Vector Quantization (LVQ)    WeightedLVQ, Machine Learning    Attribute Weighting   
    
ZTFLH: TP 183  
引用本文:   
安兴, 刘志文, 时永刚, 吕传峰. 一种加权学习矢量量化算法[J]. 模式识别与人工智能, 2011, 24(3): 376-384. AN Xing, LIU Zhi-Wen, SHI Yong-Gang, 吕Chuan-Feng . A Weighted Learning Vector Quantization Algorithm. , 2011, 24(3): 376-384.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2011/V24/I3/376
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn