模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (7): 577-589    DOI: 10.16451/j.cnki.issn1003-6059.201607001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
求解非光滑强凸优化问题的减小方差加权随机算法*
朱小辉,陶卿
中国人民解放军陆军军官学院 十一系 合肥 230031
Stochastic Algorithm with Reduced Variance and Weighted Average for Solving Non-smooth Strongly Convex Optimization Problems
ZHU Xiaohui, TAO Qing
11st Department, Army Officer Academy of PLA, Hefei 230031

全文: PDF (556 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在光滑问题随机方法中使用减小方差策略,能够有效改善算法的收敛效果.文中同时引用加权平均和减小方差的思想,求解“L1+L2+Hinge”非光滑强凸优化问题,得到减小方差加权随机算法(α-HRMDVR-W).在每步迭代过程中使用减小方差策略,并且以加权平均的方式输出,证明其具有最优收敛速率,并且该收敛速率不依赖样本数目.与已有减小方差方法相比,α-HRMDVR-W每次迭代中只使用部分样本代替全部样本修正梯度.实验表明α-HRMDVR-W在减小方差的同时也节省CPU时间.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱小辉
陶卿
关键词 机器学习随机优化减小方差    
Abstract:Using the strategy of reducing the variance in smooth stochastic method can effectively improve the convergence of the algorithm. An algorithm, hybrid regularized mirror descent with reduced variance and weighted average (α-HRMDVR-W), is obtained by using weighted average and reduced variance for solving “L1+ L2 + Hinge” non-smooth strong convex optimization problem. The variance reduction strategies are utilized at each step of the iterative process, and the weighted average of the output mode is used. It is proved that the α-HRMDVR-W has optimal convergence rate and the convergence rate does not depend on the number of samples. Unlike the existing variance reduction methods, α-HRMDVR-W only uses a small portion of samples instead of the total samples to modify the gradient at each iteration. Experimental results show that α-HRMDVR-W reduces the variance and decreases CPU time.
Key wordsMachine Learning    Stochastic Optimization    Reduced Variance   
收稿日期: 2016-03-01     
ZTFLH: TP 301  
基金资助:国家自然科学基金项目(No.61273296)资助
作者简介: 朱小辉(通讯作者),男,1989年生,硕士研究生,主要研究方向为模式识别.E-mail:xiaohuiaigw@163.com.陶 卿,男,1965年生,博士,教授,主要研究方向为模式识别.E-mail:taoqing@gmail.com.
引用本文:   
朱小辉,陶卿. 求解非光滑强凸优化问题的减小方差加权随机算法*[J]. 模式识别与人工智能, 2016, 29(7): 577-589. ZHU Xiaohui, TAO Qing. Stochastic Algorithm with Reduced Variance and Weighted Average for Solving Non-smooth Strongly Convex Optimization Problems. , 2016, 29(7): 577-589.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201607001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I7/577
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn