模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2011, Vol. 24 Issue (3): 444-451    DOI:
论文 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于高维空间稀疏最小生成树自适应覆盖模型的一类分类算法
One Class Classification Algorithm Based on Sparse Minimum Spanning Tree Adaptive Covering Model in HighDimensional Space

全文: PDF (475 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 最小生成树数据描述(MSTCD)在刻画高维空间样本点分布时,将所有图形的边作为新增虚拟样本以提供目标类样本分布描述,这种描述存在分支多、覆盖模型复杂的问题.针对该问题,依据特征空间中同类样本分布的连续性规律,文中提出基于稀疏最小生成树覆盖模型的一类分类算法.该方法首先构建目标类数据集的稀疏k近邻图表示,通过递归图分割算法发现数据分布的微聚类,再以微聚类的中心为图节点构建目标类的稀疏最小生成树覆盖模型.实验结果表明,文中方法与MSTCD和其它一类分类器相比有较优的描述性能和较低的模型复杂度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡正平
路亮
许成谦
关键词 一类分类器高维空间最小生成树(MST)稀疏最小生成树    
Abstract:Minimum spanning tree class descriptor (MSTCD) describes the target class with the assumption that all the edges of the graph are basic elements of the classifier, which offers additional virtual training data for a description of sample distribution in highdimensional space. However, this descriptive model has too many branches, which results in the model being more complicated. According to the continuity law of the feature space of similar samples, a one class classification algorithm based on sparse minimum spanning tree covering model is presented. The method firstly constructs sparse  k nearestneighbor  graph representation for the target class. Then, a recursive graph bipartition algorithm is introduced to find the microcluster. Finally, it builds sparse minimum spanning tree on the graph nodes which are centers of micro cluster. Experimental results show that the presented algorithm performs better than MSTCD and other one class classifiers.
Key wordsOne Class Classifier    High Dimensional Space    Minimum Spanning Tree (MST)    Sparse Minimum Spanning Tree   
    
ZTFLH: TP 391.4  
引用本文:   
胡正平, 路亮, 许成谦. 基于高维空间稀疏最小生成树自适应覆盖模型的一类分类算法[J]. 模式识别与人工智能, 2011, 24(3): 444-451. HU Zheng-Ping, LU Liang, XU Cheng-Qian. One Class Classification Algorithm Based on Sparse Minimum Spanning Tree Adaptive Covering Model in HighDimensional Space. , 2011, 24(3): 444-451.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2011/V24/I3/444
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn