模式识别与人工智能
2025年3月17日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2010, Vol. 23 Issue (1): 97-102    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于Inver-Over算子的改进离散粒子群优化算法
郑东亮,薛云灿,杨启文,李斐
河海大学 计算机与信息学院 常州 213022
Modified Discrete Particle Swarm Optimization Algorithm Based on Inver-Over Operator
ZHENG Dong-Liang,XUE Yun-Can,YANG Qi-Wen,LI Fei
College of Computer and Information,Hohai University,Changzhou 213022

全文: PDF (428 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 离散粒子群算法能充分利用粒子的局部极值和全局极值信息,但收敛速度慢、精度低;Inver-Over算子收敛速度快、精度高,但学习具有盲目性。结合二者优点,文中提出一种基于Inver-Over算子的改进离散粒子群优化算法。为防止早熟收敛,引入局部最优子群的概念,使粒子向局部最优子群中粒子学习而不是向个体局部最优学习。引入3个参数:学习选择概率用以确定粒子的学习对象,代数阈值确定何时向全局最优粒子学习,局部最优子群比决定最优子群的规模。讨论这些参数的选择原则,并给出相应参考选择范围。研究表明,文中算法与普通离散粒子群优化算法和郭涛算法相比,收敛速度和求解精度都有较大提高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑东亮
薛云灿
杨启文
李斐
关键词 离散粒子群优化(DPSO)Inver-Over算子郭涛算法旅行商问题    
Abstract:Though the discrete particle swarm optimization (DPSO) can make the best of the local and global optima of particles, it converges slowly with low precision. The Guo Tao algorithm converges with fast high precision, but it is blindfold to learn from the other particles. A modified discrete particle swarm optimization algorithm is presented based on the inver-over operator (IDPSO). To prevent premature convergence, the local sub-optimum particle swarm is introduced into IDPSO. Particles learn from the particles in the local sub-optimum particle swarm instead of their local optima. Three new parameters are introduced into IDPSO. Learning selection probability is introduced to select the particle to be learned. A generation threshold is introduced to define when to learn from the global particle. Local sub-optimum particle swarm ratio is introduced to define the size of the sub-optimum particle swarm. Selecting principles of these parameters is detailed discussed and the general reference scopes are given. Experiments are carried out on the traveling salesman problem and the results show that the modified IDPSO achieves good results compared with the Guo Tao algorithm and the general DPSO. The proposed algorithm improves both the convergence speed and solution precision.
Key wordsDiscrete Particle Swarm Optimization (DPSO)    Inver-Over Operator    Guo Tao Algorithm    Traveling Salesman Problem   
收稿日期: 2009-04-15     
ZTFLH: TP31  
基金资助:国家863计划资助项目(No.2006AA050104)
作者简介: 郑东亮,男,1984年生,硕士,主要研究方向为智能优化算法.薛云灿,男,1965年生,教授,博士后,主要研究方向为智能控制与智能优化.E-mail:ycxue@hhuc.edu.cn.杨启文,男,1969年生,副教授,博士,主要研究方向为进化计算及其应用.李斐,女,1983年生,硕士,主要研究方向为智能优化算法.
引用本文:   
郑东亮,薛云灿,杨启文,李斐. 基于Inver-Over算子的改进离散粒子群优化算法[J]. 模式识别与人工智能, 2010, 23(1): 97-102. ZHENG Dong-Liang,XUE Yun-Can,YANG Qi-Wen,LI Fei. Modified Discrete Particle Swarm Optimization Algorithm Based on Inver-Over Operator. , 2010, 23(1): 97-102.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2010/V23/I1/97
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn