模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2012, Vol. 25 Issue (6): 894-899    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于传输互表达的基因表达数据聚类分析
王文俊
西安电子科技大学计算机学院西安710071
Clustering Analysis of Gene Expression Data Based on Transitive Co-Expression
WANG Wen-Jun
School of Computer Science and Technology,Xidian University,Xi’an 710071

全文: PDF (767 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对基因表达数据基于表达相似的聚类分析并不能完全揭示基因之间的功能相似问题,结合基因的传输互表达关系,提出基于传输互表达的聚类分析方法。首先用基因的表达相关来构建基因相关图,然后通过最短路分析来获得基因之间传输互表达关系并作为基因的相似测度,再用k-均值聚类算法进行聚类分析。对Yeast基因表达数据进行聚类实验,并与基于表达相似的聚类结果对比。实验结果表明,基于传输互表达的聚类方法能获得更好的聚类性能和较高的聚类正确率,验证基于传输互表达的基因聚类更能揭示基因相似的本质。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文俊
关键词 基因表达数据聚类表达相似功能相似传输互表达    
Abstract:Clustering analysis of gene expression data based on similar expression measures can not fully reveal the genetic function similarity between genes. Combined with gene transitive co-expression, a method for clustering analysis based on transitive co-expression is proposed to solve the problem. Firstly, the gene-related graph is built by using coefficient between gene expression profiles. Next, the transitive co-expression relationship between genes is obtained by the shortest path analysis. Then, clustering is performed by using k-means algorithm with transitive co-expression relationship as similarity measure. The experiments on Yeast gene expression data show that the transitive co-expression-based clustering method achieves better clustering performance compared with expression-based clustering method, and the clustering accuracy is significantly higher than that of the expression-based clustering method. The experimental results indicate that the proposed algorithm has better performance in revealing the nature of gene similarity compared with expression-based clustering method.
Key wordsGene Expression Data    Clustering    Expression Similarity    Function Similarity    Transitive Co-Expression   
收稿日期: 2011-10-26     
ZTFLH: TP391  
基金资助:中央高校基本科研业务费专项资金资助项目(No.K5051203013)
作者简介: 王文俊,女,1980年生,讲师,博士,主要研究方向为模式识别、生物信息处理。E-mail:xidianwwj219@yahoo。com。cn。
引用本文:   
王文俊. 基于传输互表达的基因表达数据聚类分析[J]. 模式识别与人工智能, 2012, 25(6): 894-899. WANG Wen-Jun. Clustering Analysis of Gene Expression Data Based on Transitive Co-Expression. , 2012, 25(6): 894-899.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2012/V25/I6/894
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn