模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2013, Vol. 26 Issue (4): 357-365    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
Bayesian更新与EM算法协作下退化数据驱动的剩余寿命估计方法
司小胜13,胡昌华1,李娟2,陈茂银3
1.第二炮兵工程大学控制工程系西安710025
2.青岛农业大学机电工程学院青岛266109
3.清华大学自动化系北京100084
Degradation Data-Driven Remaining Useful Life Estimation Approach under Collaboration between Bayesian Updating and EM Algorithm
SI Xiao-Sheng1,3,HU Chang-Hua1,LI Juan2,CHEN Mao-Yin3
1. Department of Automation,Xian Institute of High-Technology,Xian 710025
2.College of Electromechanical Engineering,Qingdao Agricultural University,Qingdao 266109
3.Department of Automation,Tsinghua University,Beijing 100084

全文: PDF (778 KB)   HTML (0 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 设备的剩余寿命(RUL)估计是对设备进行视情维护、预测与健康管理的关键问题之一.为实现对于单个服役设备退化过程的建模以及RUL的估计,文中提出一种Bayesian更新与期望最大化算法协作下退化数据驱动的RUL估计方法.首先利用指数退化模型来描述设备的退化过程,基于监测的退化数据,利用Bayesian方法对模型的随机参数进行更新,进而得到RUL的概率分布函数和点估计.其次,利用运行设备到当前时刻的监测数据,基于EM算法给出退化模型中非随机未知参数的估计方法,并证明参数迭代估计中每步得到的结果是唯一最优解.最后通过数值仿真和实际数据应用研究,表明文中方法可对单个设备退化过程进行建模,有效估计退化模型中的未知参数,进而得到更好的RUL估计结果.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
司小胜
胡昌华
李娟
陈茂银
关键词 退化剩余寿命(RUL)数据驱动期望最大化预测    
Abstract:Remaining useful life (RUL) estimation is one of the key issues in condition-based maintenance and prognostics and health management. To achieve degradation modeling and RUL estimation for the individual equipment in service,a degradation data-driven RUL estimation approach under the collaboration between Bayesian updating and expectation maximization (EM) algorithm is presented. Firstly,an exponential-like degradation model is utilized to describe the equipment degradation process and the stochastic parameters in the model are updated by Bayesian approach. Based on the Bayesian updating results,the probability distribution of the RUL is derived and the point estimation of the RUL is obtained accordingly. Secondly,based on the monitored degradation data to date,a parameter estimation approach for other non-stochastic parameters in the established degradation model is proved. Furthermore,it is proved that the obtained estimation in each iteration is unique and optimal. Finally,a numerical example and a practical case study are provided to show that the presented approach effectively models degradation process for the individual equipment,achieves RUL estimation,estimates the model parameters and generates better results than a previously reported approach in the literature.
Key wordsDegradation    Remaining Useful Life(RUL)    Data Driven    Expectation Maximization    Prognostics   
收稿日期: 2012-02-13     
ZTFLH: TP202+.1  
基金资助:国家自然科学基金项目(No.61174030,61104223)、国家杰出青年基金项目(No.61025014)资助
作者简介: 司小胜(通讯作者),男,1984年生,博士研究生,主要研究方向为故障预测与健康管理、可靠性、预测维护.E-mail:sxs09@mails.tsinghua.edu.cn.胡昌华,男,1966年生,教授,博士生导师,主要研究方向为故障诊断与容错控制、可靠性、潜通路分析.李娟,女,1969年生,教授,主要研究方向为故障诊断与容错控制、复杂系统的分析和设计.陈茂银,男,1975年生,副教授,主要研究方向为复杂系统的可靠性与安全性、故障诊断与预测.
引用本文:   
司小胜,胡昌华,李娟,陈茂银. Bayesian更新与EM算法协作下退化数据驱动的剩余寿命估计方法[J]. 模式识别与人工智能, 2013, 26(4): 357-365. SI Xiao-Sheng,HU Chang-Hua,LI Juan,CHEN Mao-Yin. Degradation Data-Driven Remaining Useful Life Estimation Approach under Collaboration between Bayesian Updating and EM Algorithm. , 2013, 26(4): 357-365.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2013/V26/I4/357
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn