模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2014, Vol. 27 Issue (2): 111-119    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于等距映射的监督多流形学习算法*
邵超,万春红
河南财经政法大学 计算机与信息工程学院 郑州 450002
Supervised Multi-Manifold Learning Algorithm Based on ISOMAP
SHAO Chao, WAN Chun-Hong
College of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou 450002

全文: PDF (1532 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 目前的监督多流形学习算法大多数都根据数据的类别标记对彼此间的距离进行调整,能较好实现多流形的分类,但难以成功展现各流形的内在几何结构,泛化能力也较差,因此文中提出一种基于等距映射的监督多流形学习算法。该算法采用适合于多流形的最短路径算法,得到在多流形下依然能正确逼近相应测地距离的最短路径距离,并采用Sammon映射以更好地保持短距离,最终可成功展现各流形的内在几何结构。此外,该算法根据邻近局部切空间的相似性可准确判定新数据点所在的流形,从而具有较强的泛化能力。该算法的有效性可通过实验结果得以证实。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵超
万春红
关键词 监督多流形学习等距映射(ISOMAP)Sammon映射内在几何结构泛化能力局部切空间    
Abstract:The existing supervised multi-manifold learning algorithms adjust the distances between data points according to their class labels, and hence the multiple manifolds can be classified successfully. However,the poor generalization ability of these algorithms results in unfaithful display of the intrinsic geometric structure of some manifolds. A supervised multi-manifold learning algorithm based on Isometric mapping (ISOMAP) is proposed. The shortest path algorithm suitable for the multi-manifold structure is used to compute the shortest path distances which can effectively approximate the corresponding geodesic distances even in the multi-manifold structure. Then, Sammon mapping is used to further preserve shorter distances in the low-dimensional embedding space. Consequently, the intrinsic geometric structure of each manifold can be faithfully displayed. Moreover, the manifolds of new data points can be precisely judged based on the similarities between neighboring local tangent spaces according to the local Euclidean nature of the manifold, and thus the proposed algorithm obtains a good generalization ability. The effectiveness of the proposed algorithm is verified by experimental results.
Key wordsSupervised Multi-Manifold Learning    Isometric Mapping(ISOMAP)    Sammon Mapping    Intrinsic Geometric Structure    Generalization Ability    Local Tangent Space   
收稿日期: 2013-05-13     
ZTFLH: TP 181  
基金资助:国家自然科学基金项目(No.61202285)、河南省基础与前沿技术研究项目(No.112300410201)、河南省教育厅科学技术研究重点项目(No.13B520899)资助
作者简介: 邵超(通讯作者),男,1977年生,博士,副教授,主要研究方向为机器学习、数据可视化.E-mail: sc_flying@163.com.万春红,女,1982年生,讲师,主要研究方向为机器翻译、自然语言理解.
引用本文:   
邵超,万春红. 基于等距映射的监督多流形学习算法*[J]. 模式识别与人工智能, 2014, 27(2): 111-119. SHAO Chao, WAN Chun-Hong. Supervised Multi-Manifold Learning Algorithm Based on ISOMAP. , 2014, 27(2): 111-119.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2014/V27/I2/111
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn