| [1] QI C R, SU H, MO K, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 77-85.
[2] GUO Y L, WANG H Y, HU Q Y, et al. Deep Learning for 3D Point Clouds: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4338-4364.
[3] MA X X, WU J, XUE S, et al. A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12012-12038.
[4] BERGMANN P, JIN X, SATTLEGGER D, et al. The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization[C/OL].[2025-09-07]. https://arxiv.org/pdf/2112.09045v1.
[5] BERGMANN P, SATTLEGGER D.Anomaly Detection in 3D Point Clouds Using Deep Geometric Descriptors // Proc of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington, USA: IEEE, 2023: 2612-2622.
[6] ROTH K, PEMULA L, ZEPEDA J, et al. Towards Total Recall in Industrial Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 14298-14308.
[7] HE H Y, ZHANG J N, CHEN H X, et al. A Diffusion-Based Framework for Multi-class Anomaly Detection. Proc of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8472-8480.
[8] HORWITZ E, HOSHEN Y.Back to the Feature: Classical 3D Features Are(Almost) All You Need for 3D Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Re-cognition. Washington, USA: IEEE, 2023: 2968-2977.
[9] WANG Y, PENG J L, ZHANG J N, et al. Multimodal Industrial Anomaly Detection via Hybrid Fusion // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2023: 8032-8041.
[10] CAO Y K, XU X H, SHEN W M.Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection. Pattern Recognition, 2024, 156. DOI: 10.1016/j.patcog.2024.110761.
[11] RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Asymme-tric Student-Teacher Networks for Industrial Anomaly Detection // Proc of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington, USA: IEEE, 2023: 2591-2601.
[12] LIU J Q, XIE G Y, CHEN R T, et al. Real3D-AD: A Dataset of Point Cloud Anomaly Detection // Proc of the 37th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2023: 30402-30415.
[13] HOLLES R C, FISCHLER M A.A RANSAC-Based Approach to Model Fitting and Its Application to Finding Cylinders in Range Data // Proc of the 7th International Joint Conference on Artificial Intelligence. San Francisco, USA: IJCAI, 1981: 637-643.
[14] HUANG C Q, XU Q W, WANG Y F, et al. Self-Supervised Mas-king for Unsupervised Anomaly Detection and Localization. IEEE Transactions on Multimedia, 2022, 25: 4426-4438.
[15] PIRNAY J, CHAI K.Inpainting Transformer for Anomaly Detection // Proc of the 21st International Conference on Image Analysis and Processing. Berlin, Germany: Springer, 2022: 394-406.
[16] YAN X D, ZHANG H D, XU X M, et al. Learning Semantic Context from Normal Samples for Unsupervised Anomaly Detection. Proc of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3110-3118.
[17] LI W X, XU X H, GU Y, et al. Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via 3D Anomaly Synthesis and a Self-Supervised Learning Network // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2024: 22207-22216.
[18] ZHOU Z Y, WANG L, FANG N Y, et al. R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection // Proc of the 18th European Conference on Computer Vision. Berlin, Germany: Springer, 2024: 91-107.
[19] DOHMATOB E, FENG Y Z, KEMPE J. Model Collapse Demystified: The Case of Regression // Proc of the 38th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2024: 46979-47013.
[20] LI W Q, ZHENG B Z, XU X H, et al. Multi-sensor Object Ano-maly Detection: Unifying Appearance, Geometry, and Internal Properties // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2025: 9984-9993.
[21] ZHOU Q H, YAN J T, HE S B, et al. PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-Shot 3D Anomaly Detection // Proc of the 38th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2024: 84866-84896.
[22] SHI Y K, ZHAN X, LI Y Q, et al. Cycle-CFM: An Unsupervised Framework for Robust Multimodal Anomaly Detection in Industrial Settings. Expert Systems with Applications, 2026, 298(C). DOI: 10.1016/j.eswa.2025.129745.
[23] ZHU W B, WANG L D, ZHOU Z Q, et al. Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2025: 15214-15223.
[24] CHEN C F, QIAN S S, FANG Q, et al. HAPGN: Hierarchical Attentive Pooling Graph Network for Point Cloud Segmentation. IEEE Transactions on Multimedia, 2020, 23: 2335-2346.
[25] SIMONOVSKY M, KOMODAKIS N.Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 29-38.
[26] WANG Y, SUN Y B, LIU Z W, et al. Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics , 2019, 38(5). DOI: 10.1145/3326362.
[27] QI C R, YI L, SU H, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space // Proc of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 5105-5114.
[28] LIN Z H, HUANG S Y, WANG Y F.Learning of 3D Graph Convolution Networks for Point Cloud Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4212-4224.
[29] HU T, ZHANG J N, YI R, et al. AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model. Proc of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8526-8534.
[30] LI C L, SOHN K, YOON J, et al. CutPaste: Self-Supervised Lear-ning for Anomaly Detection and Localization // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 9659-9669.
[31] YE J N, ZHAO W G, YANG X, et al. PO3AD: Predicting Point Offsets Toward Better 3D Point Cloud Anomaly Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2025: 1353-1362.
[32] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: An Information-Rich 3D Model Repository[C/OL].[2025-09-07]. https://arxiv.org/pdf/1512.03012.
[33] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library // Proc of the 33th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 8026-8037.
[34] KINGMA D P, BA J L. Adam: A Method for Stochastic Optimiza-tion[C/OL]. [2025-09-07].https://arxiv.org/pdf/1412.6980.
[35] ZHU H Z, XIE G Y, HOU C B, et al. Towards High-Resolution 3D Anomaly Detection via Group-Level Feature Contrastive Lear-ning // Proc of the 32nd ACM International Conference on Multimedia. New York, USA: ACM, 2024: 4680-4689.
[36] WANG J X, NIU Y C, HUANG B Q.Fusion-Restoration Model for Industrial Multimodal Anomaly Detection. Neurocomputing, 2025, 637. DOI: 10.1016/j.neucom.2025.130073.
[37] RUSU R B, BLODOW N, BEETZ M.Fast Point Feature Histograms(FPFH) for 3D Registration // Proc of the IEEE Internatio-nal Conference on Robotics and Automation. Washington, USA: IEEE, 2009: 3212-3217.
[38] PANG Y J, WANG W X, TAY F E H, et al. Masked Autoenco-ders for Point Cloud Self-Supervised Learning // Proc of the 17th European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 604-621. |