模式识别与人工智能
Wednesday, Apr. 23, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (3): 301-307    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
A Fast MultiClass Support Vector Machine
LI JianWu, LU Yao
School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081

Download: PDF (353 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A binary encoding based fast multiclass support vector machine(SVM) is introduced. How to avoid the uneven class size of each SVM in the multiclassification system is discussed based on the encoding method. Then the strategy of searching the optimal division of different classes is proposed. Thus, with little loss of accuracy the system has a higher classification speed than the traditional ones. Therefore, the classifier is suitable for real time or online systems. Finally, the introduced classification system is evaluated by experiments.
Key wordsSupport Vector Machine      MultiClass      Binary Encoding     
Received: 19 June 2006     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI JianWu
LU Yao
Cite this article:   
LI JianWu,LU Yao. A Fast MultiClass Support Vector Machine[J]. , 2007, 20(3): 301-307.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I3/301
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn