模式识别与人工智能
Sunday, Apr. 13, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (3): 308-312    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Interactive MultiAgent Genetic Algorithm
HUANG YongQing1,2, HAO GuoSheng1 , LIANG ChangYong2, YANG ShanLin2
1. School of Computer Science and Technology, Xuzhou Normal University, Xuzhou 221011
2. Institute of Computer Network Systems, Hefei University of Technology, Hefei 230009

Download: PDF (663 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A interactive multiagent genetic algorithm (IMAGA) is proposed. Every agent fixed on a latticepoint in IMAGA interoperates with their neighbors, and the optimal one carries out selflearning to increase the energy. Hence the abilities of global convergence and local search of the algorithm are improved. In every generation, users only need to select the interested individuals instead of evaluating every individual, which simplifies the users' evaluation. The simulations of function optimization and fashion design shows that the proposed algorithm with higher convergence velocity reduces the total times of users' evaluation so as to alleviate user fatigue.
Key wordsMultiAgent      Interactive Genetic Algorithm      User Fatigue      Fashion Design     
Received: 14 June 2005     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HUANG YongQing
HAO GuoSheng
LIANG ChangYong
YANG ShanLin
Cite this article:   
HUANG YongQing,HAO GuoSheng,LIANG ChangYong等. Interactive MultiAgent Genetic Algorithm[J]. , 2007, 20(3): 308-312.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I3/308
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn