[1] Gavrila D M. Vision-Based 3-D Tracking of Human in Action. Ph.D Dissertation. Maryland, USA: University of Maryland, 1996
[2] Sminchisescu C, Kanaujia A, Li Zhiguo, et al. Conditional Models for Contextual Human Motion Recognition // Proc of the 10th International Conference on Computer Vision. Beijing, China, 2005, II: 1808-1815
[3]Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Context. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522
[4] Kumar S, Hebert M. Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification // Proc of the 9th IEEE Conference on Computer Vision. Nice, France, 2003, II: 1150-1157
[5] McCallum A, Freitag D, Pereira F. Maximum Entropy Markov Mo-dels for Information Extraction and Segmentation // Proc of the 17th International Conference on Machine Learning. Stanford, USA, 2000: 591-598
[6] Laptev I, Lindeberg T. Space-Time Interest Points // Proc of the 9th IEEE Conference on Computer Vision. Nice, France, 2003, I: 432-439
[7] Bobick A F, Davis J W. The Recognition of Human Movement Using Temporal Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267
[8]Kellokumpu V, Pietikainen M, Heikkila J. Human Activity Recognition Using Sequences of Postures // Proc of the International Association for Pattern Recognition Conference on Machine Vision Applications. Tsukuba Science City, Japan, 2005: 570-573
[9] Wang Liang, Suter D. Learning and Matching of Dynamic Shape Manifolds for Human Action Recognition. IEEE Trans on Image Processing, 2007, 16(6): 1646-1661
[10] Megavannan V, Agarwal B, Venkatesh B R. Human Action Re-cognition Using Depth Maps // Proc of the International Conference on Signal Processing and Communications. Bangalore, India, 2012: 1-5
[11] Lin Y C, Hu Minchun, Cheng Wenhuang, et al. Human Action Recognition and Retrieval Using Sole Depth Information // Proc of the 20th International Conference on Multimedia. Nara, Japan, 2012: 1053-1056
[12] Wang Jiang, Liu Zicheng, Wu Ying, et al. Mining Actionlet Ensemble for Action Recognition with Depth Cameras // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1290-1297
[13] Li Wanging, Zhang Zhengyou, Liu Zicheng. Action Recognition Based on a Bag of 3D Points // Proc of the IEEE International Conference on Human Communicative Behavior Analysis. San Francisco, USA, 2010: 9-14
[14] Lu Xia,Chen C C, Aggarwal J K. Human Detection and Action Recognition Using Depth Information by Kinect. Ph.D Dissertation. Austin, USA: The University of Texas, 2012
[15] Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I: 886-893
[16] Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[17] Yamato J, Ohya J, Ishii K. Recognition Human Action in Time-Sequential Images Using Hidden Markov Model // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Champaign, USA, 1992: 379-385
[18] Siminchisescu C, Kanaujia A, Metaxas D. Conditional Models for Contextual Human Motion Recognition. Computer Vision and Image Understanding, 2006, 104(2/3): 210-220
[19] Gao Zan, Zhang Hua, Cai Anni. Discussion on the Assessment Strategy of Action Recognition Algorithms. Journal of Optoelectro-nics·Laser, 2012, 23(6): 1166-1172 (in Chinese)
(高 赞,张 桦,蔡安妮.动作识别算法的评估策略探讨.光电子·激光, 2012, 23(6): 1166-1172) |