[1] Daly R, Shen Q, Aitken S. Learning Bayesian Networks: Approaches and Issues. Knowledge Engineering Review, 2011, 26(2): 99-157
[2] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, USA: Morgan Kaufmann, 1988
[3] Yao Hongliang, Wang Hao, Zhang Yousheng, et al. Research on Multi-Agent Dynamic Influence Diagrams and Its Approximate Inference Algorithm. Chinese Journal of Computers, 2008, 31(2): 236-244(in Chinese)
(姚宏亮,王 浩,张佑生,等.多Agent 动态影响图及其一种近似推理算法研究.计算机学报, 2008, 31(2): 236-244)
[4] Dagum P, Luby M. Approximating Probabilistic Inference in Baye-sian Belief Networks is NP-Hard. Artificial Intelligence, 1993, 60(1): 141-153
[5] Takaishi T.Bayesian Inference of Stochastic Volatility Model by Hybrid Monte Carlo.Journal of Circuits, Systems and Computers, 2009, 18(8): 1381-1396
[6] Draper D. Clustering without (Thinking about) Triangulation // Proc of the 11th Conference on Uncertainty in Artificial Intelligence. Montreal, Canada, 1995: 378-385
[7] Tsamardinos I, Aliferis C F. Towards Principled Feature Selection: Relevancy, Filters and Wrappers[EB/OL].[2012-05-01]. http://research.microsoft.com/enus/um/cambridge/events/aistats 2003/proceedings/133.pdf
[8] Jin K H, Wu Dan, Wu Libing. On Designing Approximate Inference Algorithms for Multiply Sectioned Bayesian Networks // Proc of the IEEE International Conference on Granular Computing. Nanchang, China, 2009: 294-299
[9] Neal R M. Probabilistic Inference Using Markov Chain Monte Carlo Methods[EB/OL].[2012-05-01]. http://www.cs.toronto.edu/pub/radford/review.pdf
[10] Yu Binbing. A Bayesian MCMC Approach to Survival Analysis with Doubly-Censored Data. Computational Statistics and Data Analysis, 2010, 54(8): 1921-1929
[11] Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741
[12] Bac F R, Jordan M I. Thin Junction Tree // Dietterich T G, Becher S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002: 569-576
[13] Aliferis C F, Tsamardinos I, Statnikov A. HITON: A Novel Markov Blanket Algorithm for Optimal Variable Selection[EB/OL]. [2012-05-01]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480117
[14] Koivisto M, Sood K. Exact Bayesian Structure Discovery in Baye-sian Networks[EB/OL]. [2012-05-01]. http://pdf.aminer.org/000/984/996/exact_bayesian_structure_discovery_in_baye-sian_networks.pdf
[15] Ferguson T S. A Bayesian Analysis of Some Nonparametric Pro-blems. The Annals of Statistics, 1973, 1(2): 209-230
[16] Heckerman D, Geiger D, Chickering M. Learning Bayesian Networks: the Combination of Knowledge and Statistical Data. Machine Learning, 1995, 20(3): 197-243
[17] Strens M J A. Evolutionary MCMC Sampling and Optimization in Discrete Spaces // Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003: 736-743
[18] Zhou Bo, Okamura H, Dohi T. Markov Chain Monte Carlo Random Testing // Proc of the AST/UCMA/ISA/ACN Conference on Advances in Computer Science and Information Technology. Miyazaki, Japan, 2010: 447-456
[19] Eaton D, Murphy K. BDAGL: Bayesian DAG Learning[EB/OL]. [ 2012-05-01]. http://www.cs.ubc.ca/~murphyk/Software/BDAGL
[20] Aliferis C F, Statnikov A, Tsamardinos I, et al. Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification-Part I: Algorithms and Empirical Evaluation[EB/OL]. [2012-05-01].http://jmlr.org/papers/volume11/aliferis10a/aliferis10a.pdf
[21] Eaton D, Murphy K. Exact Bayesian Structure Learning from Uncertain Interventions[EB/OL]. [2012-05-01]. http://www.cs.ubc.ca/~murphyk/papers/aistats07.pdf |