模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (12): 1057-1064    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
A Context Based ROI Classification Method in Medical Images
GUO Qiao-Jin, LI Ning, XIE Jun-Yuan
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023
Department of Computer Science and Technology, Nanjing University, Nanjing 210023

Download: PDF (740 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Region of interest (ROI) classification is the last and very important step in the process of computer-aided diagnosis with medical images. Traditional methods only employ local visual features of ROI for classification. Thus, the accurate classification can not be achieved under some circumstances. To improve the classification accuracy, the context information is extracted from regions around ROI. A latent Dirichlet allocation classification (LDAC) model based on LDA is proposed, which utilizes LDA to capture contextual information of ROI from surrounding regions. The proposed model is applied to mammograms and experimental results show that the classification accuracy is improved.
Key wordsRegion of Interest (ROI) Classification      Context      Latent Dirichlet Allocation (LDA)      Medical Image     
Received: 13 May 2013     
ZTFLH: TP301.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
GUO Qiao-Jin
LI Ning
XIE Jun-Yuan
Cite this article:   
GUO Qiao-Jin,LI Ning,XIE Jun-Yuan. A Context Based ROI Classification Method in Medical Images[J]. , 2014, 27(12): 1057-1064.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I12/1057
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn