模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2014, Vol. 27 Issue (12): 1065-1070    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Attribute Reduction in Variable Precision Rough Set Based on Dependence Space
YU Cheng-Yi, LI Jin-Jin
School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000

Download: PDF (315 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  To get the attribute reduction in variable precision rough set model, an upper and lower approximation binary relation is defined on object sets. By applying the binary relation, the equivalence relation is constructed on attribute sets and thus a dependence space is produced. Then, theorems for judging upper and lower approximation consistent sets are obtained. Meanwhile, a new attribute reduction method is proposed to preserve some invariant characters of upper and lower approximation in each decision class. Finally, a practical example illustrates the validity of the proposed method.
Key wordsVariable Precision Rough Set      Attribute Reduction      Binary Relation      Dependence Space     
Received: 26 June 2013     
ZTFLH: TP18  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YU Cheng-Yi
LI Jin-Jin
Cite this article:   
YU Cheng-Yi,LI Jin-Jin. Attribute Reduction in Variable Precision Rough Set Based on Dependence Space[J]. , 2014, 27(12): 1065-1070.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2014/V27/I12/1065
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn