模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (1): 90-96    DOI: 10.16451/j.cnki.issn1003-6059.201601011
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于超松弛迭代的标签传播算法*
葛芳1,郭有强1,王年2
1.蚌埠学院 计算机科学与技术系 蚌埠 233030
2.安徽大学 计算智能与信号处理教育部重点实验室 合肥 230039
Label Propagation Algorithm Based on Over-Relaxation Iteration
GE Fang1, GUO Youqiang1, WANG Nian2
1.Department of Computer Science and Technology, Bengbu University, Bengbu 233030
2.Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,Anhui University, Hefei 230039

全文: PDF (480 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对标签传播算法中存在的问题,将超松弛迭代引入标签传播算法,解决标签序列的优化问题,提出基于超松弛迭代的标签传播算法(ORLP).该算法使用正负标签的方式标记已知样本,通过在近邻点间学习分类的方式预测未知样本的标签信息,同时在每次迭代时都能较好地保留初始标记点的标签信息,以指导下一次的标签传递过程.基于超松弛迭代推导ORLP的标签传播公式,同时证明标签序列的收敛性,得到标签序列的收敛解.实验表明,ORLP具有较高的分类准确率和较快的收敛速度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛芳
郭有强
王年
关键词 半监督学习 标签传播 超松弛迭代 标签序列    
Abstract:Aiming at the problem in the label propagation algorithm, over-relaxation iteration is introduced to solve the optimization problem of label sequence and an improved label propagation algorithm based on over-relaxation iteration (ORLP) is presented. The known samples are labeled with positive and negative labels and the label information of unknown samples is predicted by learning the classification between neighbor points. Meanwhile, the label information of initial labeled samples is reserved in each iteration to guide the next label propagation process. In addition, grounded on over-relaxation iteration, the label propagation formula of ORLP is inferred and the convergence of label sequence is proved simultaneously. Thus, the convergence solution of label sequence is obtained. The experimental results show that the ORLP has higher classification accuracy and convergence speed.
Key wordsSemi-supervised Learning    Label Propagation    Over-Relaxation Iteration    Label Sequence   
收稿日期: 2014-12-24     
ZTFLH: TP 181  
基金资助:国家自然科学基金项目(No.41001292)、安徽省自然科学基金项目(No.11040606M151)、蚌埠学院自然科学基金项目(No.2014ZR26)资助
引用本文:   
葛芳,郭有强,王年. 基于超松弛迭代的标签传播算法*[J]. 模式识别与人工智能, 2016, 29(1): 90-96. GE Fang, GUO Youqiang, WANG Nian. Label Propagation Algorithm Based on Over-Relaxation Iteration. , 2016, 29(1): 90-96.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201601011      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I1/90
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn