模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2014, Vol. 27 Issue (10): 865-872    DOI:
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于差异半监督学习的相关理论分析*
姜震,詹永照
江苏大学 计算机科学与通信工程学院 镇江 212013
Related Theoretical Analysis of Diversity-Based Semi-supervised Learning
JIANG Zhen, ZHAN Yong-Zhao
School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013

全文: PDF (349 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 基于差异的半监督学习属于半监督学习和集成学习的结合,是近年来机器学习领域的研究热点.但相关的理论研究较缺乏,且都未考虑存在分布噪声的情况.文中首先针对基于差异的半监督学习的特点,定义一种分类噪声和分布噪声的混合噪声(HCAD).其次给出算法在HCAD噪声下的可能近似正确(PAC)理论分析及其应用实例.最后基于投票边缘函数,推导出在HCAD噪声下多分类器系统的泛化误差上界,并给出相关证明.文中开展的理论研究可用于设计基于差异的半监督学习算法及评估算法的泛化能力,具有广阔的应用前景.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜震
詹永照
关键词 基于差异的半监督学习噪声可能近似正确(PAC)分析泛化误差    
Abstract:Diversity-based semi-supervised learning is the combination of semi-supervised learning and ensemble learning. It is a research focus in machine learning. However, its related theoretical analysis is insufficient, and the presence of distribution noise is not taken into account in these researches. In this paper, according to the characteristic of diversity-based semi-supervised learning, a hybrid classification and distribution (HCAD) noise is defined firstly. Then, probably approximately correct (PAC) analysis for diversity-based semi-supervised learning in the presence of HCAD noise and its application of the theorem are given. Finally, based on the voting margin, an upper bound is developed on the generalization error of multi-classifier systems with theoretic proofs in the presence of HCAD noise. The proposed theorems can be used to design diversity-based semi-supervised learning algorithms and evaluate their generalization ability, and they have a promising application prospect.
Key wordsDiversity-Based Semi-supervised Learning    Noise    Probably Approximately Correct(PAC) Analysis    Generalization Error   
收稿日期: 2014-01-10     
ZTFLH: TP181  
基金资助:国家自然科学基金项目(No.61170126)、江苏大学高级人才启动基金项目(No.1291170022)资助
作者简介: 姜震(通讯作者),男,1976年生,博士,讲师,主要研究方向为机器学习、数据挖掘.E-mail:zjiang76@hotmail.com.詹永照,男,1962年生,教授,博士生导师,主要研究方向为模式识别、多媒体技术等.E-mail:yzzhan@ujs.edu.cn.
引用本文:   
姜震,詹永照. 基于差异半监督学习的相关理论分析*[J]. 模式识别与人工智能, 2014, 27(10): 865-872. JIANG Zhen, ZHAN Yong-Zhao. Related Theoretical Analysis of Diversity-Based Semi-supervised Learning. , 2014, 27(10): 865-872.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2014/V27/I10/865
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn