模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (2): 185-192    DOI: 10.16451/j.cnki.issn1003-6059.201602011
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
使用DBSCAN的FCM神经网络分类器*
张晓倩,杨波, 王琳,梁志锋
济南大学 山东省网络环境智能计算技术重点实验室 济南 250022
FCM Neural Network Classifier Using Density-Based Spatial Clustering of Applications with Noise
ZHANG Xiaoqian, YANG Bo, WANG Lin, LIANG Zhifeng
Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022

全文: PDF (465 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对浮动质心法(FCM)在实现过程采用的K-means算法不易发现任意形状簇及对离群点敏感等缺陷,提出使用具有噪声的基于密度的聚类算法(DBSCAN)改进FCM神经网络分类器的方法.DBSCAN将离群点看作无法处理的点,并能发现任意形状的簇,将分区空间中的染色点划分成若干个更准确的分区.此外,定义优化目标函数,并用粒子群优化算法优化神经网络的各个参数,获得最优的分类模型.在UCI数据库上的对比实验表明,改进后的FCM方法在分类精度、鲁棒性和运行时间方面均优于原有FCM.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓倩
杨波
王琳
梁志锋
关键词 神经网络浮动质心法(FCM)分区空间具有噪声的基于密度的聚类算法(DBSCAN)    
Abstract:Arbitrary shape clusters are difficult to be found by the K-means algorithm adopted in the implementation of floating centroids method (FCM). Moreover, K-means algorithm is sensitive to outliers. Aiming at these problems, density-based spatial clustering of applications with noise (DBSCAN) algorithm is used to improve FCM neural network classifier in this paper. The outliers are considered as the points that can not be dealt with, and clusters of arbitrary shape can be found by DBSCAN algorithm. Thus, the color points in the partition space can be divided into several more accurate partitions. In addition, an optimization objective function is defined, and the particle swarm optimization algorithm is employed to optimize the parameters of the neural network to obtain an optimal classification model. Several commonly used datasets from UCI database are selected to conduct a comparative experiment. The experimental results show that the improved FCM method generates better performance on classification accuracy, robustness and running time than that of the original FCM method.
Key wordsNeural Network    Floating Centroids Method (FCM)    Partition Space    Density-Based Spatial Clustering of Applications with Noise (DBSCAN)   
收稿日期: 2014-09-18     
ZTFLH: TP183  
基金资助:国家科技支撑计划项目(No.2012BAF12B07-3)、国家自然科学基金项目.(No.81301298,61302128,61373054,61203105,61173078,61173079,61070130)、山东省自然科学基金项目.(No.ZR2012FQ016,ZR2012FM010,ZR2011FZ001,ZR2011FL022,ZR2010FM047,ZR2010FQ028)、济南市青年科技明星计划项目(No.2013012)资助
作者简介: 张晓倩,女,1989年生,硕士研究生,主要研究方向为神经网络分类算法.E-mail:849888694@qq.com.
(ZHANG Xiaoqian, born in 1989, master student. Her research interests include neural network classification algorithm.)
杨 波(通讯作者),男,1965年生,博士,教授,主要研究方向为计算机网络、智能控制、信息处理.E-mail:yangbo@ujn.edu.cn.
(YANG Bo(Corresponding author), born in 1965, Ph.D., professor. His research interests include computer network, intelligent control and information processing.)
王 琳,男,1982年生,博士,副教授,主要研究方向为水泥建模与高性能计算.E-mail:wangplanet@gmail.com.
(WANG Lin, born in 1982, Ph.D., associate professor. His research interests include cement modeling and high-performance computing.)
梁志锋,男,1989年生,硕士研究生,主要研究方向为细胞自动机水泥建模.E-mail:liangzhf@gmail.com.
(LIANG Zhifeng, born in 1989, master student. His research interests include cellular automata cement modeling.)
引用本文:   
张晓倩,杨波, 王琳,梁志锋. 使用DBSCAN的FCM神经网络分类器*[J]. 模式识别与人工智能, 2016, 29(2): 185-192. ZHANG Xiaoqian, YANG Bo, WANG Lin, LIANG Zhifeng. FCM Neural Network Classifier Using Density-Based Spatial Clustering of Applications with Noise. , 2016, 29(2): 185-192.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201602011      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I2/185
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn