模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (2): 177-184    DOI: 10.16451/j.cnki.issn1003-6059.201602010
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
自适应阈值图像边缘检测方法*
李敏花,柏猛,吕英俊
山东科技大学 电气信息系 济南 250031
Adaptive Thresholding Based Edge Detection Approach for Images
LI Minhua, BAI Meng, Lü Yingjun
Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinnan 250031

全文: PDF (4986 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对噪声图像的边缘检测问题,提出自适应阈值图像边缘检测方法.该方法以二维高斯函数的微分算子为基础,通过构建多方向边缘检测滤波器计算图像梯度.为减少噪声对图像梯度的影响,提出根据候选阈值自适应确定滤波器尺寸的方法.在确定滤波器尺寸的基础上,进一步提出滞后阈值的自适应选择方法.为检验文中方法的性能,在不同噪声情况下,分别对滤波器尺寸、滞后阈值与边缘检测方法性能间的关系进行实验.实验表明,文中方法可根据图像噪声情况自适应选择滤波器尺寸和滞后阈值,具有良好的抗噪性能.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李敏花
柏猛
吕英俊
关键词 边缘检测图像梯度滤波器尺寸滞后阈值自适应阈值    
Abstract:To detect the edge of noisy image, an adaptive thresholding based edge detection approach is proposed. In this approach, the differential operators of the two-dimensional Gaussian function are used to design the multi-oriented edge detection filter. The image gradient is computed based on the designed filters. To reduce the effect of noise to the gradient image, an adaptive method is proposed to determine the filter size based on the candidate thresholds. After the filter size is determined, an adaptive thresholding method is proposed to select the hysteresis threshold. The proposed edge detection approach is evaluated under different noise conditions in experiments. The relationships among filter sizes, hysteresis thresholds and the proposed algorithm performance are studied. Experimental results demonstrate that the proposed approach determines the filter size and hysteresis threshold based on the image noise adaptively and it produces good anti-noise performance.
Key wordsEdge Detection    Image Gradient    Filter Size    Hysteresis Threshold    Adaptive Thresholding   
收稿日期: 2014-12-16     
ZTFLH: TP391  
基金资助:山东省自然科学基金项目(No.ZR2014FQ020,ZR2014FM002,ZR2012FQ018)、中国科学院自动化研究所复杂系统管理与控制国家重点实验室开放课题项目(No.20140109)资助
作者简介: 李敏花(通讯作者),女,1981年生,博士,副教授,主要研究方向为图像处理、模式识别、机器视觉.E-mail:minhuali09@163.com.
(LI Minhua(Corresponding author), born in 1981, Ph. D., associate professor. Her research interests include image processing, pattern recognition and computer vision.)
引用本文:   
李敏花,柏猛,吕英俊. 自适应阈值图像边缘检测方法*[J]. 模式识别与人工智能, 2016, 29(2): 177-184. LI Minhua, BAI Meng, Lü Yingjun. Adaptive Thresholding Based Edge Detection Approach for Images. , 2016, 29(2): 177-184.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201602010      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I2/177
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn