Parallel Surgery: An ACP-Based Approach for Intelligent Operations
WANG Fei-Yue1,2,7, ZHANG Mei1,2, MENG Xiangbing1,2, WANG Rong1,2, WANG Xiao1,3,ZHANG Zhicheng4, CHEN Ling5, GE Junhua6, YANG Tian7
1.The State Key Laboratory for Management and Control for Complex Systems, Institute of Automation,Chinese Academy of Sciences, Beijing 1001903 2.Parallel Optics Technology Innovation Center, Qingdao Academy of Intelligent Industries, Qingdao 2660003 3. Parallel Workshop, Qingdao Academy of Intelligent Industries, Qingdao 266000 4. PLA Army General Hospital, Beijing 100700 5. Xiangya Hospital Central South University, Changsha 410008 6. The Affiliated Hospital of Qingdao University, Qingdao 266071 7. Research Center of Computational Experiments and Parallel Systems, National University of Defense Technology, Changsha 410073
Abstract:The ACP theory that comprises artificial societies, computational experiments, and parallel execution is playing an essential role in intelligent technology, especially in modeling and control of complex systems. The ACP theory is introduced into the medical and surgery area, and the basic framework and key techniques for parallel surgery is proposed, in which the artificial surgical systems are used for modeling the doctors and patients to express complex real surgical conditions. The computational experiments are utilized to propose and evaluate a variety of operation plans. Finally, the parallel execution is conducted via interaction to optimize the operation plan and play a key role in real-time operation guidance. This parallel surgery system integrates many technologies including rule extraction, computer graphics, virtual reality/augment reality, machine learning and knowledge automation in order to highly improve the efficiency and accuracy of surgical operations.
[1] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策,2004, 19(5): 485-489. (WANG F Y. Parallel System Methods for Management and Control of Complex Systems. Control and Decision, 2004, 19(5): 485-489.) [2] WANG F Y. Parallel Control and Management for Intelligent Transportation Systems: Concepts, Architectures, and Applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 630-638. [3] 王飞跃.平行控制:数据驱动的计算控制方法.自动化学报,2013, 39(4): 293-302. (WANG F Y. Parallel Control: A Method for Data-Driven and Computational Control. Acta Automatica Sinica, 2013, 39(4): 293-302.) [4] 王飞跃.平行医学与平行健康:迈向智能医学和智慧健康的智能科技.智能产业发展战略报告.青岛:青岛智能产业技术研究院(QAII), 2014. (WANG F Y. Parallel Medicine and Parallel Health: Technologies towards Intelligent Medicine and Intelligent Health. Reports on the Development of Intelligent Industry. Qingdao, China: Qingdao Academy of Intelligent Industries (QAII), 2014.) [5] 王飞跃.平行医学.亚太痛风联盟成立大会&第七届东方痛风论坛.哈尔滨:哈尔滨医科大学附属第四医院, 2017. (WANG F Y. Parallel Medicine. Asia Pacific Gout Conference & the 7th East Gout Forum. Harbin, China: The 4th Affliated Hospital of Harbin Medical University, 2017.) [6] BAHL M, BARZILAT R, YEDIDIA A B, et al. High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision[EB/OL], [2017-11-15]. https://doi.org/10.1148/radrol.2017170549. [7] GENG Z. Review of Three-Dimensional Endoscopic Surface Imaging Techniques. IEEE Sensor Journal, 2014, 14(4): 945-960. [8] KUJUMAPFEL U G, KUHN C, HUBNER M, et al. The Karlsruhe Endoscopic Surgery Trainer as an Example for Virtual Reality in Medical Education. Minimally Invasive Therapy & Alied Technologies, 1997, 6(2): 122-125. [9] LIANG S, BANERJEE P P, EDWARD D P. A High Performance Graphic and Haptic Curvilinear Capsulorrhexis Simulation System // Proc of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington, USA: IEEE, 2009: 5092-5095. [10] MANOHARAN V, VAN GERWEN D, VAN DEN DOBBELSTEEN J J, et al. Design and Validation of an Epidural Needle Insertion Simulator with Haptic Feedback for Training Resident Anaesthesiologists // Proc of the IEEE Haptics Symposium. Washington, USA: IEEE, 2012: 341-348. [11] NIMSKY C, KUHNT D, GANSLANDT O, et al. Multimodal Navigation Integrated with Imaging // PAMIR M, SEIFERT V, KIRIS T, eds. Intraoperative Imaging. Berlin, Germany: Springer, 2011: 207-214. [12] LAINE T, LUND T, YLIKOSKI M, et al. Accuracy of Pedicle Screw Insertion with and without Computer Assistance: A Randomised Controlled Clinical Study in 100 Consecutive Patients. European Spine Journal, 2000, 9(3): 235-240. [13] DESSENNE V, LAVALLE/E S, JULLIARD R, et al. Computer Assisted Knee Anterior Cruciate Ligament Reconstruction: First Clinical Tests. Journal of Image Guided Surgery, 1995, 1(1): 59-64. [14] FLEUTE M, LAVALLE/E S, JULLIARD R. Incorporating a Statistically Based Shape Model into a System for Computer Assisted Anterior Cruciate Ligament Surgery. Medical Image Analysis. 1999, 3(3): 209-222. [15] PLASKOS C, CINQUIN P, LAVALLE/E S, et al. Praxiteles: A Miniature Bone Mounted Robot for Minimal Access Total Knee Arthroplasty. International Journal Medical Robotics Computer Assisted Surgery Mrcas, 2005, 1(4): 67-79. [16] RINGEL F, STUER C, REINKE A, et al. Accuracy of Robot Assisted Placement of Lumbar and Sacral Pedicle Screws: A Prospective Randomized Comparison to Conventional Freehand Screw Implantation. Spine, 2012, 37(8): 496-501. [17] DREVAL O N, RYNKOV I P, KASPAROVA K A, et al. Results of Using Spine Assist Mazor in Surgical Treatment of Spine Disorders. Zhurnal Voprosy Neirokhirurgii Imeni N. n. Burdenko, 2014, 78(3): 14-20. [18] SCHATLO B, MOLLIQAJ G, CUVINCIUC V, et al. Safety and Accuracy of Robot Assisted Versus Fluoroscopy Guided Pedicle Screw Insertion for Degenerative Diseases of the Lumbar Spine: A Matched Cohort Comparison. Journal of Neurosurgery Spine, 2014, 20(6): 636-643. [19] 韩建达,宋国立,赵忆文,等.脊柱微创手术机器人研究现状.技术应用, 2011(4): 24-27. (HAN J D, SONG G L, ZHAO Y W, et al. Researches of the Minimally Invasive Surgery Robot. Technique and Application, 2011(4): 24-27.) [20] 王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论.复杂系统与复杂性科学, 2004, 1(4): 25-35. (WANG F Y. Artificial Societies, Computational Experiments and Parallel Systems: A Discussion on computational Theory of Complex Social-Economic Systems. Complex Systems and Complexity Science, 2004, 1(4): 25-35.) [21] 王飞跃.计算实验方法与复杂系统行为分析和决策评估.系统仿真学报, 2004, 16(5): 893-897. (WANG F Y. Computational Experiments for Behavior Analysis and Decision Evaluation of Complex Systems. Journal of System Simulation, 2004, 16(5): 893-897.) [22] WANG F Y. Parallel Control and Management for Intelligent Transportation Systems: Concepts, Architectures, and Applications. IEEE Transactions on Intelligent Transportation Systems, 2010,11(3): 630-638. [23] 宁 滨,王飞跃,董海荣,等.高速铁路平行控制与管理系统研究框架.复杂系统与复杂性科学, 2010, 7(4): 11-21. (NING B, WANG F Y, DONG H R, et al. Framework of Parallel Control and Management for High Speed Railway Systems. Complex Systems and Complexity Science, 2010, 7(4): 11-21.) [24] WANG F Y. Parallel Driving with Software Vehicular Robots for Safety and Smartness. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1386-1387. [25] WANG F Y, YANG L Q, YANG J, et al. Urban Intelligent Parking System Based on the Parallel Theory // Proc of the International Conference on Computing, Networking and Communications. Washington, USA: IEEE, 2016. DOI: 10. 1109/ ICCNC. 2016. 7440708. [26] WANG F Y, ZHENG N N, CAO D P, et al. Parallel Driving in CPSS: A Unified Approach for Transport Automation and Vehicle Intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 577-587. [27] KANG M Z, WANG F Y. From Parallel Plants to Smart Plants: Intelligent Control and Management for Plant Growth. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 161-166. [28] GONG X Y, LIU X W, JING S F, et al. Parallel Education Systems under Perspective of System Construction for New IT Era[C/OL]. [2017-11-15]. https://www.researchgate.net/publication/320797444. [29] WANG F Y, WANG X, LI L X, et al. Steps toward Parallel Intelligence. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):345-348. [30] 王飞跃,邱晓刚,曾大军,等.基于平行系统的非常规突发事件计算实验平台研究.复杂系统与复杂性科学, 2010, 7(4): 1-10. (WANG F Y, QIU X G, ZENG D J, et al. A Computational Experimental Platform for Emergency Response Based on Parallel Systems. Complex Systems and Complexity Science, 2010, 7(4): 1-10.) [31] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1): 1-8. (WANG F Y. Software-Defined Systems and Knowledge Automation: A Parallel Paradigm Shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1): 1-8.) [32] WANG F Y, ZHANG J J, ZHENG X H, et al. Where Does AlphaGo Go: from Church Turing Thesis to AlphaGo Thesis and Beyond. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2):113-120. [33] 王飞跃.基于社会计算和平行系统的动态网民群体研究.上海理工大学学报, 2011, 33(1): 8-17. (WANG F Y. Study on Cyber-Enabled Social Movement Organizations Based on Social Computing and Parallel Systems. Journal of University of Shanghai for Science and Technology, 2011, 33(1): 8-17.) [34] 王飞跃,王 晓,袁 勇,等.社会计算与计算社会:智慧社会的基础与必然.科学通报, 2015, 60(5/6): 460-469. (WANG F Y, WANG X, YUAN Y, et al. Social Computing and Computational Societies: The Foundation and Consequence of Smart Societies. Chinese Science Bulletin, 2015, 60(5/6): 460-469.) [35] WANG X, LI L X, YUAN Y, et al. ACP Based Social Computing and Parallel Intelligence: Societies 5.0 and Beyond. CAAI Transactions on Intelligence Technology, 2016, 1(4): 377-393. [36] 刘 昕,王 晓,张卫山,等.平行数据:从大数据到数据智能.模式识别与人工智能, 2017, 30(8): 673-681. (LIU X, WANG X, ZHANG W S, et al. Parallel Data: From Big Data Intelligence. Pattern Recognition and Artificial Intelligence, 2017, 30(8): 673-681.) [37] WANG X, ZHENG X H, ZHANG X Z, et al. Analysis of Cyber Interactive Behaviors Using Artificial Community and Computational Experiments. IEEE Transactions on Systems, Man, and Cybernetics(Systems), 2017, 47(6): 995-1006. [38] KANG M Z, WANG F Y. From Parallel Plants to Smart Plants: Intelligent Control and Management for Plant Growth. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 161-166. [39] 王坤峰,苟 超,王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10): 1490-1500. (WANG K F, GOU C, WANG F Y. Parallel Vision: An ACP-Based Approach to Intelligent Vision Computing. Acta Automatica Sinica, 2016, 42(10): 1490-1500.)
[40] 王坤峰,鲁 越,王雨桐,等.平行图像:图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7): 577-587. (WANG K F, LU Y, WANG Y T, et al. Parallel Imaging: A New Theoretical Framework for Image Generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 577-587.) [41] WANG K F, GOU C, ZHENG N N, et al. Parallel Vision for Perception and Understanding of Complex Scenes: Methods, Framework, and Perspectives. Artificial Intelligence Review, 2017, 48(3): 298-328. [42] 白天翔,王 帅,沈 震,等.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2): 161-175. (BAI T X, WANG S, SHEN Z, et al. Parallel Robotics and Parallel Unmanned Systems: Framework, Structure, Process, Platform and Applications. Acta Automatica Sinica, 2017, 43(2): 161-175. ) [43] 段艳杰,吕宜生,张 杰,等.深度学习在控制领域的研究现状与展望.自动化学报, 2016, 42(5): 643-654. (DUAN Y J, L Y S, ZHANG J, et al. Deep Learning for Con-trol: The State of the Art and Prospects. Acta Automatica Sinica, 2016, 42(5): 643-654.) [44] ZAHNG J, LI L J, WANG F Y. A Probabilistic Mechanism Design for Online Auctions. IEEE Access, 2017, 5(5): 10782-10794. [45] YUAN Y, WANG F Y, ZENG D L. Developing a Cooperative Bidding Framework for Sponsored Search Markets-An Evolutionary Perspective. Information Sciences, 2016, 369: 674-689. [46] QIN R, YUAN Y, WANG F Y. Exploring the Optimal Granularity for Market Segmentation in RTB Advertising via Computational Experiment Approach. Electronic Commerce Research and Applications, 2017, 24: 68-83. [47] 王飞跃,曾大军,袁 勇.基于ACP方法的电子商务系统复杂性研究.复杂系统与复杂性科学, 2008, 5(3): 1-8. (WANG F Y, ZENG D J, YUAN Y. An ACP-Based Approach for Complexity Analysis of Ecommerce System. Complex Systems and Complexity Science, 2008, 5(3): 1-8.) [48] YUAN Y, ZENG D D. Co-evolution Based Mechanism Design for Sponsored Search Advertising. Electronic Commerce Research and Applications, 2012, 11(6): 537-547. [49] 王坤峰,苟 超,段艳杰,等.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(2): 321-332. (WANG K F, GOU C, DUAN Y J, et al. Generative Adversarial Networks: The State of the Art and Beyond. Acta Automatica Sinica, 2017, 43(3): 321-332.) [50] WANG F Y, YANG L Q, CHENG X, et al. Network Softwarization and Parallel Networks: Beyond Software Defined Networks. IEEE Network, 2016, 30(4): 60-65. [51] WANG F Y, ZHANG J, WEI Q L, et al. PDP: Parallel Dynamic Programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1): 1-5.
[52] WANG F Y. Toward a Paradigm Shift in Social Computing: The ACP Approach. IEEE Intelligent Systems, 2007, 22(5): 65-67. [53] WANG F Y. Computational Social Systems in a New Period: A Fast Transition into the Third Axial Age. IEEE Transaction on Computational Social System, 2017, 4(3): 52-53. [54] WANG K F, GUO C, ZHENG N N, et al. Parallel Vision for Perception and Understanding of Complex Scenes: Methods, Framework, and Perspectives. Artificial Intelligence Review, 2017, 48(3): 299-329.