Abstract:Entire-granulation rough sets is a kind of dynamic and static combining rough set model. They can partly express complexity,diversity and uncertainty of human cognition. The entire-granulation attribute reducts for a single concept are defined and the definitions of attribute reducts for entire-granulation rough sets are completed. The properties of entire-granulation attribute reducts, including entire-granulation attribute reducts for a single concept, entire-granulation absolute attribute reducts and entire-granulation Pawlak reducts, are investigated.Moreover, the relationships among various kinds of entire-granulation attribute reducts are studied. The obtained results contribute to practical applications and the generation of heuristic algorithms of entire-granulation attribute reducts.
[1] PAWLAK Z. Rough Sets-Theoretical Aspect of Reasoning about Data.Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991. [2] ZIARKO W. Variable Precision Rough Set Model. Journal of Computer and System Sciences, 1993, 46(1): 39-59. [3] KANG X P, MIAO D Q. A Variable Precision Rough Set Model Based on the Granularity of Tolerance Relation. Knowledge-Based Systems, 2016, 102: 103-115. [4] GRECO S, MATARAZZO B, SLOWIN/SKI R.Dominance-Based Rough Set Approach to Preference Learning from Pairwise Comparisons in Case of Decision under Uncertainty. Journal of Financial Economics, 1970, 11(11): 183-206. [5] 邓维斌,王国胤,胡 峰.基于优势关系粗糙集的自主式学习模型.计算机学报, 2014, 37(12): 2408-2418. (DENG W B, WANG G Y, HU F. Self-learning Model Based on Dominance-Based Rough Set Approach. Chinese Journal of Compu-ters, 2014, 37(12): 2048-2418.) [6] LIN T Y. Neighborhood Systems: A Qualitative Theory for Fuzzy and Rough Sets // WANG P, eds. Advances in Machine Intelligence and Soft Computing. Cambridge, USA: The MIT Press, 1997: 132-155. [7] ZHU P F, HU Q H, ZUO W M, et al. Multi-granularity Distance Metric Learning via Neighborhood Granule Margin Maximization.Information Sciences, 2014, 282: 321-331. [8] YAO Y Y. Three-Way Decision: An Interpretation of Rules in Rou-gh Set Theory // Proc of the 4th International Conference on Rough Sets and Knowledge Technology. Berlin, Germany: Springer-Verlag, 2009: 642-649. [9] 邓大勇,陈 林.并行约简与F-粗糙集 // 苗夺谦,王国胤,姚一 豫,等.云模型与粒计算.北京:科学出版社, 2012: 210-228. (DENG D Y, CHEN L. Parallel Reducts and F-rough Sets // MIAO D Q, WANG G Y, YAO Y Y, et al., eds. Cloud Model and Granular Computing.Beijing, China: Science Press, 2012: 210-228.) [10] 邓大勇,裴明华,黄厚宽.F-粗糙集方法对概念漂移的度量.浙江师范大学学报(自然科学版), 2013, 36(3): 303-308. (DENG D Y, PEI M H, HUANG H K. The F-rough Sets Approaches to the Measures of Concept Drift. Journal of Zhejiang Normal University(Natural Sciences), 2013, 36(3): 303-308.) [11] 邓大勇,徐小玉,黄厚宽.基于并行约简的概念漂移探测.计算机研究与发展, 2015, 52(5): 1071-1079. (DENG D Y, XU X Y, HUANG H K. Concept Drifting Detection for Categorical Evolving Data Based on Parallel Reducts. Journal of Computer Research and Development, 2015, 52(5): 1071-1079.) [12] 邓大勇,苗夺谦,黄厚宽.信息表中概念漂移与不确定性分析.计算机研究与发展, 2016, 53(11): 2607-2612. (DENG D Y, MIAO D Q, HUANG H K.Analysis of Concept Dri-fting and Uncertainty in an Information Table. Journal of Computer Research and Development, 2016, 53(11): 2607-2612.) [13] QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS: A Multi-granulation Rough Set. Information Sciences, 2010, 180(6): 949-970. [14] 邓大勇,黄厚宽.多粒度粗糙集的双层绝对约简.模式识别与人工智能, 2016, 29(11): 969-975. (DENG D Y, HUANG H K. Double-Level Absolute Reduction for Multi-granulation Rough Sets. Pattern Recognition and Artificial Intelligence, 2016, 29(11): 969-975.) [15] 邓大勇,卢克文,苗夺谦,等.知识系统中全粒度粗糙集及概念漂移的研究.计算机学报[J/OL].[2016-11-29].http://www.cnki.net/kcms/detail/11.1826.TP.20161129.1246.004.html. (DENG D Y, LU K W, MIAO D Q, et al. Study on Entire-Gra-nulation Rough Sets and Concept Drifting in a Knowledge System.Chinese Journal of Computers[J/OL].[2016-11-29]. http://www.cnki.net/kcms/detail/11.1826.TP.20161129.1246.004.html.) [16] 邓大勇,薛欢欢,苗夺谦,等.属性约简准则与约简信息损失的研究.电子学报, 2017, 45(2): 401-407. (DENG D Y, XUE H H, MIAO D Q, et al. Study on Criteria of Attribute Reduction and Information Loss of Attribute Reduction. Acta Electronica Sinica, 2017, 45(2): 401-407.)