[1] FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised Visual Domain Adaptation Using Subspace Alignment // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2013: 2960-2967.
[2] ALJUNDI R, EMONET R, MUSELET D, et al. Landmarks-Based Kernelized Subspace Alignment for Unsupervised Domain Adaptation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 56-63.
[3] LU H, ZHANG L, CAO Z G, et al. When Unsupervised Domain Adaptation Meets Tensor Representations // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 599-608.
[4] 张 倩,李 明,王雪松,等.一种面向多源领域的实例迁移学习.自动化学报, 2014, 40(6): 1176-1183.
(ZHANG Q, LI M, WANG X S, et al. Instance-Based Transfer Learning for Multi-source Domains. Acta Automatica Sinica, 2014, 40(6): 1176-1183.)
[5] 张景祥,王士同,邓赵红,等.融合异构特征的子空间迁移学习算法.自动化学报, 2014, 40(2): 236-246.
(ZHANG J X, WANG S T, DENG Z H, et al. A Subspace Transfer Learning Algorithm Integrating Heterogeneous Features. Acta Automatica Sinica, 2014, 40(2): 236-246.)
[6] SUGIYAMA M, NAKAJIMA S, KASHIMA H, et al. Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation // SCHÖLKOPF B, PLATT J, HOFMANN T, eds. Advances in Neural Information Processing Systems 20. Cambridge, USA: The MIT Press, 2007: 1433-1440.
[7] SUN B, FENG J S, SAENKO K. Return of Frustratingly Easy Domain Adaptation[C/OL]. [2019-02-26]. https://arxiv.org/pdf/1511.05547.pdf.
[8] GONG B Q, SHI Y, SHA F, et al. Geodesic Flow Kernel for Unsupervised Domain Adaptation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2012: 2066-2073.
[9] COURTY N, FLAMARY R, TUIA D. Domain Adaptation with Re-gularized Optimal Transport // Proc of the Joint European Confe-rence on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2014: 274-289
[10] TAN B, SONG Y Q, ZHONG E H, et al. Transitive Transfer Learning // Proc of the 21th ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining. New York, USA: ACM, 2015: 1155-1164.
[11] TAN B, ZHANG Y, PAN S J, et al. Distant Domain Transfer Learning // Proc of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 2604-2610.
[12] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Generative Adversarial Networks // Proc of the 34th International Confe-rence on Machine Learning. New York, USA: ACM, 2017: 214-223.
[13] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved Training of Wasserstein Gans[C/OL]. [2019-02-26]. https://arxiv.org/pdf/1704.00028.pdf.
[14] CUTURI M. Sinkhorn Distances: Lightspeed Computation of Optimal Transport // BURGES C J C, BOTTOU L, WELLING M, et al., eds. Advances in Neural Information Processing Systems 26. Cambridge, USA: The MIT Press, 2013: 2292-2300.
[15] BLONDEL M, SEGUY V, ROLET A. Smooth and Sparse Optimal Transport[C/OL]. [2019-02-26]. https://arxiv.org/pdf/1710.06276.pdf.
[16] ZHAO P, ZHOU Z H. Label Distribution Learning by Optimal Transport[C/OL]. [2019-02-26]. https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/aaai18ladot.pdf.
[17] SANJABI M, BA J, RAZAVIYAYN M, et al. On the Convergence and Robustness of Training GANs with Regularized Optimal Transport // BENGIO S, WALLACH H M, LAROCHELLE H, et al., eds. Advances in Neural Information Processing Systems 31. Cambridge, USA: The MIT Press, 2018: 7091-7101.
[18] ZHAO T, NEVATIA R, WU B. Segmentation and Tracking of Multiple Humans in Crowded Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1198-1211.
[19] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
[20] GE W, COLLINS R T. Marked Point Processes for Crowd Counting // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 2913-2920.
[21] CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy Preserving Crowd Monitoring: Counting People without People Models or Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2008. DOI: 10.1109/CVPR.2008.4587569.
[22] CHAN A B, VASCONCELOS N. Bayesian Poisson Regression for Crowd Counting // Proc of the 12th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2009: 545-551.
[23] CHAN A B, VASCONCELOS N. Counting People with Low-Level Features and Bayesian Regression. IEEE Transactions on Image Processing, 2012, 21(4): 2160-2177.
[24] CHEN K, GONG S G, XIANG T, et al. Cumulative Attribute Space for Age and Crowd Density Estimation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2013: 2467-2474.
[25] TAN B, ZHANG J P, WANG L. Semi-supervised Elastic Net for Pedestrian Counting. Pattern Recognition, 2011, 44(10/11): 2297-2304.
[26] XIA W, ZHANG J P, KRUGER U. Semisupervised Pedestrian Counting with Temporal and Spatial Consistencies. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 1705-1715.
[27] ZHOU Q, ZHANG J P, CHE L F, et al. Crowd Counting with Limited Labeling through Submodular Frame Selection. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1728-1738.
[28] 覃勋辉,王修飞,周 曦,等.多种人群密度场景下的人群计数.中国图象图形学报, 2013, 18(4): 392-398.
(QIN X H, WANG X F, ZHOU X, et al. Counting People in Various Crowed Density Scenes Using Support Vector Regression. Journal of Image and Graphics, 2013, 18(4): 392-398.)
[29] SINDAGI V A, PATEL V M. Generating High-Quality Crowd Density Maps Using Contextual Pyramid CNNs // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017, I: 1879-1888.
[30] SAM D B, SURYA S, BABU R V. Switching Convolutional Neural Network for Crowd Counting // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 4031-4039.
[31] ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-Image Crowd Counting via Multi-column Convolutional Neural Network // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 589-597.
[32] KANG D, DHAR D, CHAN A B. Crowd Counting by Adapting Convolutional Neural Networks with Side Information[C/OL]. [2019-02-26]. https://arxiv.org/pdf/1611.06748.pdf.
[33] 时增林,叶阳东,吴云鹏,等.基于序的空间金字塔池化网络的人群计数方法.自动化学报, 2016, 42(6): 866-874.
(SHI Z L, YE Y D, WU Y P, et al. Crowd Counting Using Rank-based Spatial Pyramid Pooling Network. Acta Automatica Sinica, 2016, 42(6): 866-874.) |