模式识别与人工智能
2025年4月5日 星期六   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2023, Vol. 36 Issue (10): 942-952    DOI: 10.16451/j.cnki.issn1003-6059.202310007
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于自监督图掩码神经网络的社交推荐模型
臧秀波1, 夏鸿斌1,2, 刘渊1,2
1.江南大学 人工智能与计算机学院 无锡 214122;
2.江南大学 江苏省媒体设计与软件技术重点实验室 无锡 214122
Social Recommendation Model Based on Self-Supervised Graph Masked Neural Networks
ZANG Xiubo1, XIA Hongbin1,2, LIU Yuan1,2
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122;
2. Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi 214122

全文: PDF (782 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 现有自监督社交推荐模型大多通过人工启发式图增强和单一关系视图间对比的策略构建自监督信号,性能受到增强自监督信号质量的影响,难以自适应地抑制噪声.由此,文中提出基于自监督图掩码神经网络的社交推荐模型.首先,分别构建用户社交和物品分类的单一关系视图及高阶连通异构图,采用图掩码学习范式指导用户社交图进行自适应和可学习的数据增强.然后,设计异构图编码器,学习视图中的潜在语义,跨视图对用户、物品嵌入进行对比学习,完成自监督任务,分别对用户、物品嵌入进行加权融合,完成推荐任务.最后,利用多任务训练策略联合优化自监督学习任务、推荐任务和图掩码任务.在3个真实数据集上的实验表明文中模型性能具有一定提升.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
臧秀波
夏鸿斌
刘渊
关键词 社交推荐图掩码学习图神经网络自监督学习    
Abstract:The existing self-supervised social recommendation models mostly construct self-supervised signals through the strategies of manual heuristic graph enhancement and contrasts between single-relational views. Thus, the performance of the model is easily affected by the quality of enhanced self-supervised signals, making it challenging to adaptively suppress noise. To solve these problems, a social recommendation model based on self-supervised graph masked neural networks(SGMN) is proposed. Firstly, single-relational views for user-social interaction and item classification are constructed respectively, as well as high-order connected heterogeneous graphs. Specifically, the graph masked learning paradigm is adopted to guide adaptive and learnable data augmentation for the user-social graph. Secondly, a heterogeneous graph encoder is designed to learn the latent semantics of the views, and cross-view contrastive learning is performed on user and item embeddings to complete self-supervised tasks. Then, weighted fusion is conducted on the user and item embeddings separately for recommendation task. Finally, a multi-task training strategy is employed to jointly optimize self-supervised learning, recommendation and graph masked tasks. Experiments on three real datasets demonstrate a certain performance improvement of SGMN.
Key wordsSocial Recommendation    Graph Masked Learning    Graph Neural Network    Self-Supervised Learning   
收稿日期: 2023-09-25     
ZTFLH: TP391  
基金资助:国家自然科学基金项目(No.61972182)资助
通讯作者: 夏鸿斌,博士,教授,主要研究方向为个性化推荐、自然语言处理.E-mail:hbxia@163.com.   
作者简介: 臧秀波,硕士研究生,主要研究方向为推荐系统、深度学习.E-mail:1372489070@qq.com.刘 渊,博士,教授,主要研究方向为网络安全、社交网络.E-mail:lyuan1800@sina.com.
引用本文:   
臧秀波, 夏鸿斌, 刘渊. 基于自监督图掩码神经网络的社交推荐模型[J]. 模式识别与人工智能, 2023, 36(10): 942-952. ZANG Xiubo, XIA Hongbin, LIU Yuan. Social Recommendation Model Based on Self-Supervised Graph Masked Neural Networks. Pattern Recognition and Artificial Intelligence, 2023, 36(10): 942-952.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202310007      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2023/V36/I10/942
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn