Abstract:A regularized locality preserving discriminant analysis (RLPDA) for face recognition is proposed. Affected by the small sample size (SSS) problem and noises, zero eigenvalues and small eigenvalues of locality preserving within-class scatter matrix are inadequate. It degrades the performance of discriminant locality preserving projections (DLPP). In this paper, eigenvalues of locality preserving within-class scatter matrix are regularized by a reciprocal spectrum model, and the subspaces are weighted according to the regularized eigenvalues. Specifically, the face subspace is kept, the noise subspace is weakened, and the zero subspace is enhanced. Through the analysis of the distribution of discriminant information in data space, it is found that RLPDA utilizes the whole discriminant information. Hence, RLPDA improves the recognition accuracies and avoids the SSS problem in principal. The experimental results on FERET and UMIST face databases illustrate the effectiveness of the proposed RLPDA algorithm.
[1] Zhao W,Chellappa R,Phillips P J,et al.Face Recognition: A Literature Survey.ACM Computing Surveys,2003,35(4): 399-458 [2] Gu Xiaohua,Gong Weiguo,Yang Liping.Supervised Graph-Optimized Locality Preserving Projections.Optics and Precision Engineering,2011,19(3): 672-680 (in Chinese) (辜小花,龚卫国,杨利平.有监督图优化保局投影.光学精密工程,2011,19(3): 672-680) [3] Liu Kezheng,Wang Huixin,Bu Xuena.Discriminant Maximum Margin Criterion Based on Locality Preserving Projections.Pattern Recognition and Artificial Intelligence,2010,23(2): 178-185 (in Chinese) (林克正,王慧鑫,卜雪娜.基于局部保持投影的鉴别最大间距准则.模式识别与人工智能,2010,23(2): 178-185) [4] Turk M,Pentland A.Eigenfaces for Recognition.Journal of Cognitive Neuroscience,1991,3(1): 71-86 [5] Belhumeur P,Hesoanfa J,Kiregeman D.Eigenfaces vs.Fisherfaces: Recognition Using Class Specific Linear Projection.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7): 711-720 [6] Yang Jian,Frangi A F,Yang Jingyu,et al.KPCA plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(2): 230-244 [7] Zhang Sheng,Sim T.Discriminant Subspace Analysis: A Fukunaga-Koontz Approach.IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(10): 1732-1745 [8] Lu Juwei,Plataniotis K N,Ventsanopoulos A N.Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition.Pattern Recognition Letters,2005,26(2): 181-191 [9] Jiang Xudong,Mandal B,Kot A.Eigenfeature Regularization and Extraction in Face Recognition.IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(3): 383-394 [10] Kim S K,Toh K A,Lee S.Two-Fold Regularization for Kernel Fisher Discriminant Analysis in Face Recognition.IEICE Electronics Express,2009,6(9): 540-545 [11] He Xiaofei,Niyogi P.Locality Preserving Projections // Thrun S,Saul L K,Schlkopf B,eds.Advances in Neural Information Processing Systems.Cambridge,USA: MIT Press,2004,XVI: 153-160 [12] Yu Weiwei,Teng Xiaolong,Liu Chongqing.Face Recognition Using Discriminant Locality Preserving Projection.Image and Vision Computing,2006,24(3): 239-248 [13] Yang Liping,Gong Weiguo,Gu Xiaohua,et al.Null Space Discriminant Locality Preserving Projections for Face Recognition.Neurocomputing,2008,71(16/17/18): 3644-3649 [14] Yang Liping,Gong Weiguo,Gu Xiaohua,et al.Complete Discriminant Locality Preserving Projections for Face Recognition.Journal of Software,2010,21(6): 1277-1286 (in Chinese) (杨利平,龚卫国,辜小花.完备鉴别保局投影人脸识别算法.软件学报,2010,21(6): 1277-1286) [15] Yang Liping,Gong Weiguo,Gu Xiaohua,et al.Bagging Null Space Locality Preserving Discriminant Classifiers for Face Recognition.Pattern Recognition,2009,42(9): 1853-1858 [16] Yang Liping.Research on Locality Preserving Subspace Methods for Facial Feature Extraction and Recognition.Ph.D Dissertation.Chongqing,China: Chongqing University,2008 (in Chinese) (杨利平.保局子空间人脸特征提取及识别方法研究.博士学位论文.重庆:重庆大学,2008) [17] Phillips P J,Moon H,Rizvi S A,et al.The FERET Evaluation Methodology for Face Recognition Algorithms.IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(10): 1090-1104 [18] Graham D B,Allinson N M.Face Recognition: From Theory to Applications // Wechsler H,Phillips P J,Bruce V,et al,eds.NATO ASI Series F: Computer and Systems.Cambridge,USA: Springer,1998,163: 446-456