[1] TENG Z J, LÜ J L, GUO L W. An Improved Hybrid Grey Wolf Optimization Algorithm. Soft Computing, 2019, 23: 6617-6631.
[2] MIRJALILI S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowledge-Based Systems, 2016, 96(15): 120-133.
[3] JAIN N K, NANGIA U, JAIN J. A Review of Particle Swarm Optimization. Journal of the Institution of Engineers, 2018, 99: 407-411.
[4] MAVROVOUNIOTIS M, LI C H, YANG S X. A Survey of Swarm Intelligence for Dynamic Optimization: Algorithms and Applications. Swarm and Evolutionary Computation, 2017, 33: 1-17.
[5] KENNEDY J, EBERHART R C. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. Washington, USA: IEEE, 1995: 1942-1948.
[6] ARORA S, SINGH S. Butterfly Optimization Algorithm: A Novel Approach for Global Optimization. Soft Computing, 2019, 23: 715-734.
[7] ARORA S, ANAND P. Binary Butterfly Optimization Approaches for Feature Selection. Expert Systems with Applications, 2019, 116(2): 147-160.
[8] ARORA S, SINGH S. An Improved Butterfly Optimization Algorithm with Chaos. Intelligent and Fuzzy Systems, 2017, 32(47):1079-1088.
[9] WANG G G, DEB S, CUI Z H. Monarch Butterfly Optimization. Neural Computing and Applications, 2019, 31(7): 1995-2014.
[10] KHAN S U R, KHAN A, MUSHTAQ N, et al. Genetic Algorithm and Earthworm Optimization Algorithm for Energy Management in Smart Grid // Proc of the 12th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Berlin, Germany: Springer, 2017: 447-459.
[11] HASSANIEN A E, KILANY M, HOUSSEIN E H, et al. Intelligent Human Emotion Recognition Based on Elephant Herding Optimization Tuned Support Vector Regression. Biomedical Signal Processing and Control, 2018, 45: 182-191.
[12] FATHY A, ELAZIZ M A, SAYED E T, et al. Optimal Parameter Identification of Triple-Junction Photovoltaic Panel Based on Enhanced Moth Search Algorithm. Energy, 2019, 188: DOI:10.1016/j.energy.2019.116025.
[13] 岳龙飞,杨任农,张一杰,等.Tent混沌和模拟退火改进的飞蛾扑火优化算法.哈尔滨工业大学学报, 2019, 51(5): 146-154.
(YUE L F, YANG R N, ZHANG Y J, et al. Tent Chaos and Simulated Annealing Improved Moth-Flame Optimization Algorithm. Journal of Harbin Institute of Technology, 2019, 51(5): 146-154.)
[14] FENG J H, ZHANG J, ZHU X S, et al. A Novel Chaos Optimization Algorithm. Multimedia Tools and Applications, 2016, 76(16): 17405-17436.
[15] NENAVATH H, DR RAVI K J, DR SWAGATAM D. A Synergy of the Sine-Cosine Algorithm and Particle Swarm Optimizer for Improved Global Optimization and Object Tracking. Swarm and Evolutionary Computation, 2018, 43(12): 1-30.
[16] 王依柔,张达敏,徐 航等.基于自适应扰动的疯狂蝴蝶算法[J/OL].[2020-05-26].https://doi.org/10.19734/j.issn.1001-3695.2019.08.0281.
(WANG Y R, ZHANG D M, XU H, et al. Crazy Butterfly Algorithm Based on Adaptive Perturbation[J/OL]. [2020-05-26]. https://doi.org/10.19734/j.issn.1001-3695.2019.08.0281.)
[17] LI X, NIU P F, LIU J P. Combustion Optimization of a Boiler Based on the Chaos and Lévy Flight Vortex Search Algorithm. Applied Mathematical Modelling, 2018, 58: 3-18.
[18] HAUPT R, HAUPT S. Practical Genetic Algorithm. New York, USA: John Wiley and Sons, 2004.
[19] 郭文艳,王 远,戴 芳,等.基于精英混沌搜索策略的交替正余弦算法.控制与决策, 2019, 34(8): 1654-1662.
(GUO W Y, WANG Y, DAI F, et al. Alternating Sine Cosine Algorithm Based on Elite Chaotic Search Strategy. Control and Decision, 2019, 34(8): 1654-1662.)
[20] 陈 崚,孙海鹰.蚁群算法一阶欺骗性问题的时间复杂度分析.模式识别与人工智能, 2010, 23(1): 1-6.
(CHEN L, SUN H Y. Time Complexity Analysis of Ant Colony Algorithm on First Order Deceptive Problem. Pattern Recognition and Artificial Intelligence, 2010, 23(1): 1-6.)
[21] 左姣姣,倪志伟,朱旭辉,等.融合协同进化人工鱼群算法和SVM的雾霾预测方法.模式识别与人工智能, 2018, 31(8): 725-739.
(ZUO J J, NI Z W, ZHU X H, et al. Haze Prediction Method Combining Co-evolution Artificial Fish Swarm Algorithm and Su-pport Vector Machine. Pattern Recognition and Artificial Intelligence, 2018, 31(8): 725-739.)
[22] 李雪岩,李雪梅,李学伟,等.基于混沌映射的元胞遗传算法.模式识别与人工智能, 2015, 28(1): 42-49.
(LI X Y, LI X M, LI X W, et al. Cellular Genetic Algorithm Based on Chaotic Map. Pattern Recognition and Artificial Intelligence, 2015, 28(1): 42-49.)
[23] DERRAC J, GARCIA S, MOLINA D, et al. A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[24] PEROLAT J, COUSO I, LOQUIN K, et al. Generalizing the Wilcoxon Rank-Sum Test for Interval Data. International Journal of Approximate Reasoning, 2015, 56(A): 108-121.
[25] NABIL E. A Modified Flower Pollination Algorithm for Global Optimization. Expert Systems with Applications, 2016, 57: 192-203. |