[1] ZHAO Y B, GAO P P, YANG W D, et al. Vehicle Exhaust: An Overstated Cause of Haze in China. Science of the Total Environment, 2018, 612: 490-491.
[2] 吴 兑.近十年中国灰霾天气研究综述.环境科学学报, 2012, 32(2): 257-269.
(WU D. Hazy Weather Research in China in the Last Decade: A Review. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269.)
[3] ADENIRAN J A, AREMU A S, SAADU Y O, et al. Particulate Matter Concentration Levels during Intense Haze Event in an Urban Environment. Environmental Monitoring and Assessment, 2018. DOI: https://doi.org/10.1007/s10661-017-6414-4.
[4] LUO Z X, GAO M R, LUO X S, et al. National Pattern for Heavy Metal Contamination of Topsoil in Remote Farmland Impacted by Haze Pollution in China. Atmospheric Research, 2016, 170: 34-40.
[5] XU W B, JING S C, YU W J, et al. A Comparison between Bayes Discriminant Analysis and Logistic Regression for Prediction of Debris Flow in Southwest Sichuan, China. Geomorphology, 2013, 201: 45-51.
[6] MARVIN H J P, KLETER G A, VAN DER FELS-KLERX H J, et al. Proactive Systems for Early Warning of Potential Impacts of Natural Disasters on Food Safety: Climate-Change-Induced Extreme Events as Case in Point. Food Control, 2013, 34(2): 444-456.
[7] KOYUNCUGIL A S, OZGULBAS N. Financial Early Warning System Model and Data Mining Application for Risk Detection. Expert Systems with Applications, 2012, 39(6): 6238-6253.
[8] 丁君美,刘贵全,李 慧.改进随机森林算法在电信业客户流失预测中的应用.模式识别与人工智能, 2015, 28(11): 1041-1049.
(DING J M, LIU G Q, LI H. The Application of Improved Random Forest in the Telecom Customer Churn Prediction. Pattern Recognition and Artificial Intelligence, 2015, 28(11): 1041-1049.)
[9] PÉREZ-SUÁREZ R, LÓPEZ-MENÉNDEZ A J. Growing Green? Forecasting CO2, Emissions with Environmental Kuznets Curves and Logistic Growth Models. Environmental Science and Policy, 2015, 54: 428-437.
[10] QIN S S, LIU F, WANG J Z, et al. Analysis and Forecasting of the Particulate Matter(PM) Concentration Levels over Four Major Cities of China Using Hybrid Models. Atmospheric Environment, 2014, 98: 665-675.
[11] 杨迎心,冯志勇,饶国政,等.基于模糊综合评价构建物流运输预警模型.计算机应用, 2011, 31(10): 2844-2848.
(YANG Y X, FENG Z Y, RAO G Z, et al. Early-Warning Model of Logistics Transport Based on Fuzzy Comprehensive Evaluation. Journal of Computer Applications, 2011, 31(10): 2844-2848.)
[12] QIAO J F, CAI J, HAN H G, et al. Predicting PM2.5 Concentrations at a Regional Background Station Using Second Order Self-organizing Fuzzy Neural Network. Atmosphere, 2017. DOI: 10.3390/atmos8010010.
[13] FU M L, WANG W W, LE Z C, et al. Prediction of Particular Matter Concentrations by Developed Feed-Forward Neural Network with Rolling Mechanism and Gray Model. Neural Computing and Applications, 2015, 26(8): 1789-1797.
[14] 李婉华,陈羽中,郭 昆,等.基于改进粒子群优化的并行极限学习机.模式识别与人工智能, 2016, 29(9): 840-849.
(LI W H, CHEN Y Z, GUO K, et al. Parallel Extreme Learning Machine Based on Improved Particle Swarm Optimization. Pattern Recognition and Artificial Intelligence, 2016, 29(9): 840-849.)
[15] VAPNIK V. The Nature of Statistical Learning Theory // Proc of the Conference on Artificial Intelligence. Berlin, Germany: Springer-Verlag, 1995: 988-999.
[16] 唐振鹏,黄双双,陈尾虹.基于支持向量机的银行系统重要性评估研究.系统科学与数学, 2018, 38(1): 57-77.
(TANG Z P, HUANG S S, CHEN W H. Research on the Systemically Important Evaluation of Banks Based on Support Vector Machine. Journal of Systems Science and Mathematical Sciences, 2018, 38(1): 57-77.)
[17] 顾晓清,倪彤光,姜志彬,等.面向大规模噪声数据的软性核凸包支持向量机.电子学报, 2018, 46(2): 347-357.
(GU X Q, NI T G, JIANG Z B, et al. Soft Kernel Convex Hull Support Vector Machine for Large Scale Noisy Datasets. Acta Electronica Sinica, 2018, 46(2): 347-357.)
[18] ZHANG X Y, LIANG Y T, ZHOU J Z, et al. A Novel Bearing Fault Diagnosis Model Integrated Permutation Entropy, Ensemble Empirical Mode Decomposition and Optimized SVM. Measurement, 2015, 69: 164-179.
[19] MOGHRAM B A, NABIL E, BADR A. Ab-initio Conformational Epitope Structure Prediction Using Genetic Algorithm and SVM for Vaccine Design. Computer Methods and Programs in Biomedicine, 2018, 153: 161-170.
[20] 倪志伟,张 琛,倪丽萍.基于萤火虫群优化算法的选择性集成雾霾天气预测方法.模式识别与人工智能, 2016, 29(2): 143-153.
(NI Z W, ZHANG C, NI L P. Haze Forecast Method of Selective Ensemble Based on Glowworm Swarm Optimization Algorithm. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 143-153.)
[21] SUN W, SUN J Y. Daily PM2.5 Concentration Prediction Based on Principal Component Analysis and LSSVM Optimized by Cuckoo Search Algorithm. Journal of Environmental Management, 2016, 188: 144-152.
[22] WANG P, ZHANG H, QIN Z D, et al. A Novel Hybrid-Garch Model Based on ARIMA and SVM for PM2.5 Concentrations Forecasting. Atmospheric Pollution Research, 2017, 8(5): 850-860.
[23] DUMITRACHE R C, IRIZA A, MACO B A, et al. Study on the Influence of Ground and Satellite Observations on the Numerical Air-Quality for PM10 over Romanian Territory. Atmospheric Environment, 2016, 143: 278-289.
[24] GARCÍA NIETO P J, COMBARRO E F, DEL COZ DIAZ J J, et al. A SVM-Based Regression Model to Study the Air Quality at Local Scale in Oviedo Urban Area(Northern Spain): A Case Study. Applied Mathematics and Computation, 2013, 219(17): 8923-8937.
[25] WANG M W, WAN Y C, YE Z W, et al. Remote Sensing Image Classification Based on the Optimal Support Vector Machine and Modified Binary Coded Ant Colony Optimization Algorithm. Information Sciences, 2017, 402: 50-68.
[26] CERVANTES J, GARCÍALAMONT F, RODRIGUEZ L, et al. PSO-Based Method for SVM Classification on Skewed Data Sets. Neurocomputing, 2017, 228: 187-197.
[27] GARCIA NIETO P J, GARCÍA-GONZALO E, ALONSO FERNÁ-NDEZ J R A, et al. A Hybrid Wavelet Kernel SVM-Based Method Using Artificial Bee Colony Algorithm for Predicting the Cyanotoxin Content from Experimental Cyanobacteria Concentrations in the Trasona Reservoir(Northern Spain). Journal of Computational and Applied Mathematics, 2017, 309: 587-602.
[28] 李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践, 2002, 22(11): 32-38.
(LI X L, SHAO Z J, QIAN J X. An Optimizing Method Based on Autonomous Animats: Fish-Swarm Algorithm. Systems Engineering-Theory & Practice, 2002, 22(11): 32-38.)
[29] 田海雷,李洪儒,许葆华.基于改进人工鱼群算法的支持向量机预测.计算机工程, 2013, 39(4): 222-225.
(TIAN H L, LI H R, XU B H. Support Vector Machine Prediction Based on Improved Artificial Fish Swarm Algorithm. Computer Engineering, 2013, 39(4): 222-225.)
[30] LIN K C, CHEN S Y, HUNG J C. Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms. Mathematical Problems in Engineering, 2015. DOI: 10.1155/2015/604108.
[31] LIU Y, WANG R X. Study on Network Traffic Forecast Model of SVR Optimized by GAFSA. Chaos, Solitons and Fractals, 2013, 89(3): 153-159.
[32] 马 骊,李 阳,樊锁海.改进人工鱼群算法在外汇预测和投资组合中的应用.系统工程理论与实践, 2015, 35(5): 1256-1266.
(MA L, LI Y, FAN S H. Application of the Improved Artificial Fish Swarm Algorithm in Foreign Exchange Forecast and Portfolio. Systems Engineering-Theory & Practice, 2015, 35(5): 1256-1266.)
[33] 华罗庚,王 元.数论在近似分析中的应用.北京:科学出版社, 1978.
(HUA L G, WANG Y. The Application of Number Theory in Approximation. Beijing, China: Science Press, 1978.)
[34] 张 玲,张 钹.佳点集遗传算法.计算机学报, 2001, 24(9): 917-922.
(ZHANG L, ZHANG B. Good Point Set Based Genetic Algorithm. Chinese Journal of Computers, 2001, 24(9): 917-922.)
[35] 张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(1): 32-42.
(ZHANG X G. Introduction to Statistical Learning Theory and Support Vector Machines. Acta Automatica Sinica, 2000, 26(1): 32-42.)
[36] 朱旭辉,倪志伟,程美英,等.融合协同进化离散型人工鱼群算法和多重分形的雾霾预测方法.系统理论工程与实践, 2017, 37(4): 999-1010.
(ZHU X H, NI Z W, CHENG M Y, et al. Haze Prediction Method Based on Multi-fractal Dimension and Co-evolution Discrete Artificial Fish Swarm Algorithm. Systems Engineering-Theory & Practice, 2017, 37(4): 999-1010.)
[37] LUAN X Y, LI Z P, LIU T Z. A Novel Attribute Reduction Algorithm Based on Rough Set and Improved Artificial Fish Swarm Algorithm. Neurocomputing, 2016, 174: 522-529.
[38] 王 凌,沈婧楠,王圣尧,等.协同进化算法研究进展.控制与决策, 2015, 30(2): 193-202.
(WANG L, SHEN J N, WANG S Y, et al. Advances in Co-evolutionary Algorithms. Control and Decision, 2015, 30(2): 193-202.)
[39] 程美英,倪志伟,朱旭辉.融合粗糙集和二元萤火虫算法的雾霾关键影响因素预测方法.系统工程理论与实践, 2017, 37(1): 241-252.
(CHENG M Y, NI Z W, ZHU X H. Rough Set Combine with Binary Glowworm Swarm Optimization for Key Haze Influence Factors. Systems Engineering-Theory & Practice, 2017, 37(1): 241-252.)
[40] 赛 英,张凤廷,张 涛.基于支持向量机的中国股指期货回归预测研究.中国管理科学, 2013, 21(3): 35-39.
(SAI Y, ZHANG F T, ZHANG T. Research of Chinese Stock Index Futures Regression Prediction Based on Support Vector Machines. Chinese Journal of Management Science, 2013, 21(3): 35-39.)
[41] ZHANG F S, LI S W, HU Z G, et al. Fish Swarm Window Selection Algorithm Based on Cell Microscopic Automatic Focus. Cluster Computing, 2017, 20(1): 485-495.
[42] KONG X Y, SUN Y Y, SU R G, et al. Real-Time Eutrophication Status Evaluation of Coastal Waters Using Support Vector Machine with Grid Search Algorithm. Marine Pollution Bulletin, 2017, 119(1): 307-319. |