模式识别与人工智能
2025年4月10日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2024, Vol. 37 Issue (10): 887-909    DOI: 10.16451/j.cnki.issn1003-6059.202410003
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于硬负样本对比学习的水下图像生成方法
刘子健1, 王兴梅1,2, 陈伟京1, 张万松1, 张天姿1
1.哈尔滨工程大学 计算机科学与技术学院 哈尔滨 150001;
2.哈尔滨工程大学 水声技术全国重点实验室 哈尔滨 150001
Underwater Image Generation Method Based on Contrastive Learning with Hard Negative Samples
LIU Zijian1, WANG Xingmei1,2, CHEN Weijing1, ZHANG Wansong1, ZHANG Tianzi1
1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001;
2. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001

全文: PDF (11095 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在获取稀缺水下图像时图像生成技术至关重要,通常依赖有序配对数据.考虑到实际海洋环境中获取该类数据受限,引入CL-GAN(Contrastive Learning-Based Generative Adversarial Network),克服图像域双射条件的限制,但由于随机采样的负样本质量较低,模型难以从水下噪声图像中学习复杂内容特征.因此,文中提出基于硬负样本对比学习的特征级生成对抗网络(Hard Negative Sample Contrastive Learning-Based Feature Level Generative Adversa-rial Network, HCFGAN),用于水下图像生成.为了提高负样本质量,提出硬负样本采样模块(Hard Negative Sampling Module, HNS),挖掘样本间的特征相似性,将靠近锚点样本的硬负样本加入对比损失中,学习复杂特征.为了保证负样本的复杂性和全面性,构造负样本生成模块(Negative Sample Generation Module, NSG).通过NSG和HNS的对抗性训练,确保硬负样本的有效性.为了提高模型对水下模糊图像的特征提取能力及训练稳定性,设计上下文特征生成器和全局特征判别器,增强对细微内容特征和水下风格信息的感知能力.实验表明,HCFGAN生成的水下图像具有良好的真实性和丰富性,在水下图像生成实际应用中具有重要价值.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子健
王兴梅
陈伟京
张万松
张天姿
关键词 水下图像生成生成对抗网络(GAN)对比学习硬负样本特征提取    
Abstract:Image generation is essential to acquire scarce underwater images, and it is typically reliant on paired data. Considering the limitation of practical access to such data distributions in marine environments, a contrastive learning-based generative adversarial network(CL-GAN) is introduced to overcome the constraints of bijection in image domain. However, the model struggles to learn complex content features from noisy images due to the low quality of negative samples resulting from random sampling. To address this issue, a hard negative sample contrastive learning-based feature level GAN(HCFGAN) for underwater image generation is proposed. To improve the quality of negative samples, a hard negative sampling module(HNS) is designed to mine feature similarity between samples. The hard negative samples close to the anchor sample are incorporated into contrastive loss for complex feature learning. To ensure the complexity and comprehensiveness of negative samples, a negative sample generation module(NSG) is constructed. The adversarial training of NSG and HNS ensures the validity of hard negative samples. To enhance feature extraction capability and training stability of the model for underwater fuzzy images, a contextual feature generator and a global feature discriminator are designed. Experiments show that the underwater images generated by HCFGAN exhibit good authenticity and richness with practical value in underwater image generation.
Key wordsUnderwater Image Generation    Generative Adversarial Network(GAN)    Contrastive Learning    Hard Negative Samples    Feature Extraction   
收稿日期: 2024-08-26     
ZTFLH: TP 391  
基金资助:水声技术重点实验室稳定支持课题(No.JCKYS2024604SSJS006)、中央高校基本科研业务费专项资金(No.3072024XX0602)资助
通讯作者: 张万松,博士,副教授,主要研究方向为仿真建模、模式识别.E-mail:zhangwansong0217@gmail.com.   
作者简介: 刘子健,博士研究生,主要研究方向为图像生成、对比学习.E-mail:32185246@qq.com.王兴梅,博士,教授,主要研究方向为人工智能、图像处理、计算机视觉.E-mail:wangxingmei@hrbeu.edu.cn.陈伟京,硕士,助理工程师,主要研究方向为水下图像转换.E-mail:chenweijing@hrbeu.edu.cn.张天姿,硕士研究生,主要研究方向为水下图像复原、图像处理.E-mail:zhangtianzi@hrbeu.edu.cn.
引用本文:   
刘子健, 王兴梅, 陈伟京, 张万松, 张天姿. 基于硬负样本对比学习的水下图像生成方法[J]. 模式识别与人工智能, 2024, 37(10): 887-909. LIU Zijian, WANG Xingmei, CHEN Weijing, ZHANG Wansong, ZHANG Tianzi. Underwater Image Generation Method Based on Contrastive Learning with Hard Negative Samples. Pattern Recognition and Artificial Intelligence, 2024, 37(10): 887-909.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.202410003      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2024/V37/I10/887
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn