模式识别与人工智能
2025年4月3日 星期四   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2009, Vol. 22 Issue (1): 162-168    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
二维直方图区域斜分的最大熵阈值分割算法*
吴一全,潘喆,吴文怡
南京航空航天大学 信息科学与技术学院 南京 210016
Maximum Entropy Image Thresholding Based on Two-Dimensional Histogram Oblique Segmentation
WU Yi-Quan, PAN Zhe, WU Wen-Yi
School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

全文: PDF (1072 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 指出现有二维直方图区域直分法中存在明显的错分,提出一种二维直方图区域斜分方法.导出基于二维直方图区域斜分的最大熵阈值选取公式及其快速递推算法,给出图像分割结果和运行时间.并与基于二维直方图直分的最大熵原始算法及其快速算法进行比较.结果表明二维直方图区域斜分可使分割后的图像内部区域均匀,边界形状准确,更有稳健的抗噪性.本文算法的运行时间约为二维直方图斜分最大熵法原始算法的2%,不到二维直方图直分最大熵法的两种快速递推算法的1/3.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴一全
潘喆
吴文怡
关键词 图像处理阈值分割二维直方图区域斜分最大熵快速递推算法    
Abstract:The obvious wrong segmentation is pointed out in the existing two-dimensional histogram vertical segmentation method. A two-dimensional histogram oblique segmentation method is proposed. Then the formula and its fast recursive algorithm of the maximum Shannon entropy thresholding are deduced based on the two-dimensional histogram oblique segmentation. Finally, the threshold images and the processing time are given in the experimental results and analysis. The results are compared with those of the original maximum Shannon entropy algorithm and its fast algorithms based on the two-dimensional histogram vertical segmentation. The experimental results show that the proposed method makes the inner part uniform and the edge accurate in the threshold image, and it has a better anti-noise property. The processing time of the fast recursive algorithm of the proposed method is about 2% of that of the original two-dimensional maximum Shannon entropy algorithm, and it is less than one third of that of two fast recursive algorithms of the maximum Shannon entropy thresholding based on the two-dimensional histogram vertical segmentation.
Key wordsImage Processing    Thresholding Segmentation    Two-Dimensional Histogram Oblique Segmentation    Maximum Entropy    Fast Recursive Algorithm   
收稿日期: 2007-09-14     
ZTFLH: TP391.4  
基金资助:国家自然科学基金资助项目(No.60872065)
作者简介: 吴一全,男,1963年生,博士,副教授,主要研究方向为图像处理与模式识别、视频处理与通信、信号处理等.E-mail: gumption_s@yahoo.com.cn.潘喆,女,1983年生,硕士研究生,主要研究方向为图像处理与识别等.吴文怡,女,1983年生,硕士研究生,主要研究方向为图像处理、目标检测与跟踪.
引用本文:   
吴一全,潘喆,吴文怡. 二维直方图区域斜分的最大熵阈值分割算法*[J]. 模式识别与人工智能, 2009, 22(1): 162-168. WU Yi-Quan, PAN Zhe, WU Wen-Yi. Maximum Entropy Image Thresholding Based on Two-Dimensional Histogram Oblique Segmentation. , 2009, 22(1): 162-168.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2009/V22/I1/162
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn