Abstract:In this paper, the application of rough sets theory on group is discussed. Based on the notions of the congruence relation in a rough group, rough coset and rough invariant subgroup, some properties of the rough invariant subgroup are given and proved. Thus the rough group theory is completed.
[1] Kuroki N. Rough Ideals in Semigroups. Information Sciences, 1997, 100(1-4): 139-163 [2] Biswas R, Nanda S. Rough Groups and Rough Subgroups. Bulletin of the Polish Academy of Sciences Mathematics,1994, 42(3): 251-254 [3] Han S Q, Hu G R. Rough Coset and Rough Invariant Subgroup. Computer Science, 2001, 28(5): 76-77 (in Chinese) (韩素青,胡桂荣.粗糙陪集、粗糙不变子群.计算机科学, 2001, 28(5): 76-77) [4] Howie J M. Fundamentals of Semigroup Theory. Oxford, UK: Clarendon Press,1995 [5] Pawlak Z. Rough Sets. International Journal of Computer and Information Science, 1982, 11(5): 341-356 [6] Yu J L, Shu L. The Property of Rough Quotient Semigroup. Pattern Recognition and Artificial Intelligence, 2003, 16(1): 126-128 (in Chinese) (于佳丽,舒 兰.粗糙商群的性质.模式识别与人工智能, 2003, 16(1): 126-128) [7] Shu L, Yu J L. Rough Sets in Quotient Semigroups. Journal of Systems Science and Information, 2004, 2(3): 459-462 [8] Yu J L, Shu L. Property of Rough Ideals in Semigroups. Journal of University of Electronic Science and Technology of China, 2002, 31(5): 539-541 (in Chinese) (于佳丽,舒 兰.半群中粗理想的性质.电子科技大学学报, 2002, 31(5): 539-541) [9] Yu J L, Shu L. The Property of Rough Quotient Semigroup. Fuzzy Systems and Mathematics, 2003, 17(4): 25-27 (in Chinese) (于佳丽,舒 兰.粗糙商半群的性质.模糊系统与数学, 2003, 17(4): 25-27)