模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2017, Vol. 30 Issue (4): 365-376    DOI: 10.16451/j.cnki.issn1003-6059.201704009
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于多目标烟花算法的关联规则挖掘*
吴琼 , 曾庆鹏
南昌大学 信息工程学院 南昌 330031
Association Rules Mining Based on Multi-objective Fireworks Optimization Algorithm
WU Qiong, ZENG Qingpeng
School of Information Engineering, Nanchang University, Nanchang 330031

全文: PDF (845 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对量化关联规则的特点,提出基于多目标烟花算法和反向学习的量化关联规则挖掘算法.该算法通过多目标烟花算法全面搜索关联规则,引入反向学习提高算法收敛速度并降低算法陷入局部最优的概率,使用基于相似度的冗余淘汰机制保持库中关联规则的多样性,经过多次迭代最终获得关联规则集合.文中算法无需人为指定支持度、置信度等阈值,实验表明,算法在不同数据集上均获得稳定结果,能充分覆盖数据集,在可靠性、相关性及可理解性之间获得较好的均衡.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴琼
曾庆鹏
关键词 量化关联规则 多目标优化 烟花算法 反向学习    
Abstract:According to characteristics of quantitative association rules, a quantitative association rules mining algorithm based on multi-objective fireworks optimization algorithm and opposition-based learning(QAR_MOFWA_OBL) is proposed. Firstly, fireworks optimization algorithm is utilized for a complete search of association rules. Next, opposition-based learning(OBL) is introduced to improve the convergence speed of the algorithm and reduce the probability of falling into local optimum. Then, the diversity of rules is maintained by means of the elimination mechanism of redundancy. Finally, after several iterations, the association rule set is obtained. Moreover, the thresholds of support or confidence of the proposed algorithm are not expected to be specified artificially. Simulation experiment shows the stable results are obtained on different real-world datasets, and the dataset can be adequately covered with a good balance among reliability, relevance and comprehensibility.
Key wordsQuantitative Association Rules    Multi-objective Optimization    Fireworks Optimization Algorithm    Opposition-Based Learning   
收稿日期: 2016-11-02     
ZTFLH: TP 301  
基金资助:国家自然科学基金项目(No.61262049)、江西省教育厅科学技术研究项目(No.GJJ13087)资助
作者简介: 吴琼,女,1991年生,硕士研究生,主要研究方向为智能计算、数据挖掘.Email:june.wu2929@gmail.com.
引用本文:   
吴琼 , 曾庆鹏. 基于多目标烟花算法的关联规则挖掘*[J]. 模式识别与人工智能, 2017, 30(4): 365-376. WU Qiong, ZENG Qingpeng. Association Rules Mining Based on Multi-objective Fireworks Optimization Algorithm. , 2017, 30(4): 365-376.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201704009      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2017/V30/I4/365
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn