模式识别与人工智能
2025年4月11日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2015, Vol. 28 Issue (5): 411-421    DOI: 10.16451/j.cnki.issn1003-6059.201505004
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于自适应启动策略的混合交叉动态约束多目标优化算法*
耿焕同1,2,孙家清2, 贾婷婷2
1.南京信息工程大学 江苏省网络监控中心 南京 210044.
2.南京信息工程大学 计算机与软件学院 南京 210044
A Mixture Crossover Dynamic Constrained Multi-objective Evolutionary Algorithm Based on Self-Adaptive Start-Up Strategy
GENG Huan-Tong1,2, SUN Jia-Qing2, JIA Ting-Ting2
1.Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044
2.School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044

全文: PDF (641 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对单独采用冷启动方式而出现再次收敛速度慢、单种交叉算子自适应不足以及正态变异多样性程度偏弱等问题,提出一种基于自适应启动策略的新型混合交叉动态约束多目标优化算法.在算法设计中,首先采用冷热混合方式识别环境动态调整的程度,并引用柯西变异增强多样性;然后混合BLX_α、SBX和DE三种差分进化经典交叉算子,并通过各自贡献度自适应调整其竞争力,以增强交叉操作对环境动态变化的自适应性;最后采用精英与进化两个群体相互协作,进一步均衡算法的局部和全局搜索能力.在6个标准测试函数上的仿真结果表明,该算法能在不同环境下动态识别调整的程度,增加初始种群多样性以提高算法的跟踪效果,且能在同一环境下自适应调整交叉算子以提高算法的收敛速度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿焕同
孙家清
贾婷婷
关键词 动态多目标优化柯西变异自适应启动策略混合交叉算子    
Abstract:Aiming at the slow convergence speed by using the cold start only, the poor adaptiveness of a single crossover operator and the poor diversity of the normal mutation, a mixture crossover dynamic constrained multi-objective evolutionary algorithm based on self-adaptive start-up strategy is proposed. Firstly, the hybrid cold-and-hot start-up mode is designed to identify the change degree of dynamic environment and the Cauchy mutation is used to enhance the diversity of evolutionary population. Then, to enhance the adaptiveness of crossover operation to the dynamic environment, three classical crossover operators, BLX_α,SBX and DE, are used simultaneously, and the respective competitiveness are adjusted adaptively according to their contributions. Finally, the cooperation of the elitist population and the evolutionary population balance the global searching ability and the local searching ability. The simulation results on 6 standard testing functions show that the proposed algorithm not only can dynamically identify the change degree in different environments and improve dynamic tracking effect by enhancing the diversity of initial population, but also can choose crossover operators automatically to accelerate the convergence.
Key wordsDynamic Multi-objective Optimization    Cauchy Mutation    Adaptive Start-Up Strategy    Mixture Crossover Operator   
收稿日期: 2014-06-17     
ZTFLH: TP 301  
基金资助:国家自然科学基金项目(No.61373016)、江苏省“青蓝工程”项目(2012)资助
作者简介: 焕同(通讯作者),男,1973年生,教授,博士生导师,主要研究方向为计算智能、气象信息技术.E-mail:htgeng@nuist.edu.cn.孙家清,男,1990年生,硕士研究生,主要研究方向为计算智能、气象信息技术.贾婷婷,女,1989年生,硕士研究生,主要研究方向为气象信息技术.
引用本文:   
耿焕同,孙家清, 贾婷婷. 基于自适应启动策略的混合交叉动态约束多目标优化算法*[J]. 模式识别与人工智能, 2015, 28(5): 411-421. GENG Huan-Tong, SUN Jia-Qing, JIA Ting-Ting. A Mixture Crossover Dynamic Constrained Multi-objective Evolutionary Algorithm Based on Self-Adaptive Start-Up Strategy. , 2015, 28(5): 411-421.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201505004      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2015/V28/I5/411
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn