模式识别与人工智能
2025年4月7日 星期一   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2018, Vol. 31 Issue (11): 1008-1017    DOI: 10.16451/j.cnki.issn1003-6059.201811005
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于多特征融合的云平台异常检测方法
张晶1, 任永功1
1.辽宁师范大学 计算机与信息技术学院 大连 116081
Anomaly Detection of Cloud Computing Platform Based on Multi-features Fusion
ZHANG Jing1, REN Yonggong1
1.School of Computer and Information Technology, Liaoning Normal University, Dalian 116081

全文: PDF (1379 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了充分利用云平台不同子系统的多特征信息,进一步提升云平台异常检测精度,提出基于距离约束与解空间优化的多特征融合模型.在特征距离约束前提下,利用迭代法求解,使单一子系统训练误差之和最小,实现多特征自动融合并获得最优输出解,并引入高次幂系数避免模型退化.同时,该模型进一步拓展为增量模型,保证云平台数据实时计算.提出的特征融合模型可在降低高维特征信息间冗余的同时挖掘云平台多子系统互补、潜在知识,提升异常识别效果.基于开源框架OpenStack构建私有云平台,实时采集运行数据,验证提出异常检测模型的可行性,并对比现有方法获得更高的异常检测精度.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晶
任永功
关键词 多特征融合云计算平台异常检测极端学习机    
Abstract:A multi-feature fusion model based on distance constraint and solution space optimization is proposed to utilize the information of different sub-systems in the cloud computing platform and enhance the performance of anomaly detection. The minimum of the errors-sum from all of the single sub-system is obtained to achieve the optimal solution and the fusion of multi-features by iterating, and the high power coefficient is introduced to avoid the degenerating. Moreover, the proposed method is developed as an incremental learning method to ensure the real-time performance. The proposed method reduces the redundant information between high-dimension features and meanwhile mines the latent knowledge of different sub-systems in cloud platform. Thus, the performance in anomaly detection is improved. The private cloud platform based on OpenStack is constructed, and the real-time collection of data is implemented to verify the effectiveness of the proposed method. Compared with the state-of-the-art methods of anomaly detection in cloud platform, the proposed method achieves better accuracy.
Key wordsMulti-feature Fusion    Cloud Computing Platform    Anomaly Detection    Extreme Learning Machine   
收稿日期: 2018-05-24     
ZTFLH: TP 391.41  
基金资助:国家自然科学基金项目(No.61772252,61702242)、辽宁省博士启动基金项目(No.20170520207)资助
通讯作者: 任永功,博士,教授,主要研究方向为数据挖掘.E-mail:ryg@lnnu.edu.cn.   
作者简介: 张晶,博士,讲师,主要研究方向为机器学习、模式分类.E-mail:zhangjing_0412@163.com.
引用本文:   
张晶, 任永功. 基于多特征融合的云平台异常检测方法[J]. 模式识别与人工智能, 2018, 31(11): 1008-1017. ZHANG Jing, REN Yonggong. Anomaly Detection of Cloud Computing Platform Based on Multi-features Fusion. , 2018, 31(11): 1008-1017.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201811005      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2018/V31/I11/1008
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn