模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2013, Vol. 26 Issue (1): 83-89    DOI:
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于禁忌搜索的管道状况集成检测方法
王永雄1,2,苏剑波1
1.上海交通大学自动化系教育部系统控制与信息处理重点实验室上海200240
2.井冈山大学电子与信息工程学院吉安343009
An Ensemble Detection Method of Pipeline Condition Based on Tabu Search
WANG Yong-Xiong 1,2,SU Jian-Bo1
1.Key Laboratory of System Control and Information Processing of Ministry of Education,Department of Automation,Shanghai Jiao Tong University,Shanghai 200240
2.School of Electronics and Information Engineering,Jinggangshan University,Ji′an 343009

全文: PDF (554 KB)   HTML (0 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为提高管道状况异常检测的识别率和实时性,提出基于禁忌搜索的半监督K-means聚类和C4。5决策树的集成检测方法。在禁忌搜索中引入代价敏感函数,选择具有最佳分类性能的特征组合和最佳组合权值,提高了不平衡数据分布中少数类的识别率。半监督K-means方法首先把样本特征聚类为k类,再利用C4。5方法精确每一类的边界,级联式集成方法缓解不平衡数据分布问题,提高管道检测的准确度。并提出3种集成原则:加权叠加、最近一致和最邻近原则。实验结果验证了算法的有效性,在管道状况的异常检测中具有较高的分类准确度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永雄
苏剑波
关键词 异常检测集成分类不平衡数据半监督K-means和C4.5禁忌搜索    
Abstract:To improve the recognition rate of pipe anomaly detection and real-time performance,an ensemble classification method based on Tabu search is proposed which combines semi-supervise K-means clustering and C4.5 decision tree. The cost-sensitive function is introduced in Tabu search to select the most discriminating feature subset and the best ensemble weights. Thus,the classification performance of the minority class in imbalance data is improved. The semi-supervise K-means approach partitions the features of samples into k clusters firstly. Then,a supervised C4.5 decision tree in each K-means cluster is trained to refine the decision boundaries by learning the subgroups within the cluster. The ensemble classification by cascading K-means and C4.5 alleviates the problems of imbalance data and improves the classification accuracy of imbalance data. The final decisions of the K-means and C4.5 methods are integrated based on the weighted sum rule,the nearest-neighbor rule,and the nearest consensus rule respectively. The experimental results show that the proposed system is effective in classifying imbalance data and has high performance in detecting the anomaly of pipeline.
Key wordsAnomaly Detection    Ensemble Classification    Imbalance Data    Semi-Supervise K-Means and C4.5    Tabu Search   
收稿日期: 2011-11-03     
ZTFLH: TP24  
基金资助:国家自然科学基金重点资助项目(No.60935001)
作者简介: 王永雄,男,1970年生,博士研究生,副教授,主要研究方向为智能机器人及视觉。E-mail:wyxiong@sjtu。edu。cn。苏剑波(通讯作者),男,1969年生,博士,教授,主要研究方向为智能机器人理论与技术、机器学习与人机交互等。E-mail:jbsu@sjtu。edu。cn。
引用本文:   
王永雄,苏剑波. 基于禁忌搜索的管道状况集成检测方法[J]. 模式识别与人工智能, 2013, 26(1): 83-89. WANG Yong-Xiong ,SU Jian-Bo. An Ensemble Detection Method of Pipeline Condition Based on Tabu Search. , 2013, 26(1): 83-89.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2013/V26/I1/83
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn